Show simple item record

Understanding the roles of three academic communities in a prospective learning health ecosystem for diagnostic excellence

dc.contributor.authorSatterfield, Katherine
dc.contributor.authorRubin, Joshua C.
dc.contributor.authorYang, Daniel
dc.contributor.authorFriedman, Charles P.
dc.date.accessioned2020-02-05T15:06:11Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-02-05T15:06:11Z
dc.date.issued2020
dc.identifier.citationSatterfield, Katherine; Rubin, Joshua C.; Yang, Daniel; Friedman, Charles P. (2020). "Understanding the roles of three academic communities in a prospective learning health ecosystem for diagnostic excellence." Learning Health Systems 4(1): n/a-n/a.
dc.identifier.issn2379-6146
dc.identifier.issn2379-6146
dc.identifier.urihttps://hdl.handle.net/2027.42/153643
dc.description.abstractInaccurate, untimely, and miscommunicated medical diagnoses represent a wicked problem requiring comprehensive and coordinated approaches, such as those demonstrated in the characteristics of learning health systems (LHSs). To appreciate a vision for how LHS methods can optimize processes and outcomes in medical diagnosis (diagnostic excellence), we interviewed 32 individuals with relevant expertise: 18 who have studied diagnostic processes using traditional behavioral science and health services research methods, six focused on machine learning (ML) and artificial intelligence (AI) approaches, and eight multidisciplinary researchers experienced in advocating for and incorporating LHS methods, ie, scalable continuous learning in health care. We report on barriers and facilitators, identified by these subjects, to applying their methods toward optimizing medical diagnosis. We then employ their insights to envision the emergence of a learning ecosystem that leverages the tools of each of the three research groups to advance diagnostic excellence. We found that these communities represent a natural fit forward, in which together, they can better measure diagnostic processes and close the loop of putting insights into practice. Members of the three academic communities will need to network and bring in additional stakeholders before they can design and implement the necessary infrastructure that would support ongoing learning of diagnostic processes at an economy of scale and scope.
dc.publisherNational Academies Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermachine learning
dc.subject.othermultidisciplinary
dc.subject.otherdiagnostic error
dc.subject.othermedical diagnosis
dc.subject.otherlearning health systems
dc.subject.otherlearning community
dc.titleUnderstanding the roles of three academic communities in a prospective learning health ecosystem for diagnostic excellence
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Health Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153643/1/lrh210204_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153643/2/lrh210204.pdf
dc.identifier.doi10.1002/lrh2.10204
dc.identifier.sourceLearning Health Systems
dc.identifier.citedreferenceBlasimme A, Fadda M, Schneider M, Vayena E. Data sharing for precision medicine: policy lessons and future directions. Health Affairs. 2018; 37 ( 5 ): 702 ‐ 709. https://doi.org/10.1377/hlthaff.2017.1558
dc.identifier.citedreferenceVerghese A, Shah NH, Harrington RA. What this computer needs is a physician: humanism and artificial intelligence. JAMA. 2018; 319 ( 1 ): 19 ‐ 20. https://doi.org/10.1001/jama.2017.19198
dc.identifier.citedreferenceHinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018. https://doi.org/10.1001/jama.2018.11100
dc.identifier.citedreferenceCabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017; 318 ( 6 ): 517 ‐ 518. https://doi.org/10.1001/jama.2017.7797
dc.identifier.citedreferenceSingh H, Graber ML, Hofer TP. Measures to improve diagnostic safety in clinical practice. Journal of Patient Safety. 2017;Publish Ahead of Print. doi: https://doi.org/10.1097/PTS.0000000000000338
dc.identifier.citedreferenceNational Quality Forum. Improving diagnostic quality and safety: final report. September 2017. http://www.qualityforum.org/Publications/2017/09/Improving_Diagnostic_Quality_and_Safety_Final_Report.aspx. Accessed September 29, 2017.
dc.identifier.citedreferenceDonabedian A. The quality of care: how can it be assessed? JAMA. 1988; 260 ( 12 ): 1743 ‐ 1748. https://doi.org/10.1001/jama.1988.03410120089033
dc.identifier.citedreferenceKrumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Affairs. 2014; 33 ( 7 ): 1163 ‐ 1170. https://doi.org/10.1377/hlthaff.2014.0053
dc.identifier.citedreferenceECRI Institute. Creating infrastructure for big data in the public and private sectors—Larry Norton. https://www.youtube.com/watch?v=MEiAXtdfSbs&index=42&list=PLEvm6gjNpayOiazYvwtsQpFsvrZzMtvhL.
dc.identifier.citedreferenceEtheredge LM. Rapid learning: a breakthrough agenda. Health Affairs. 2014; 33 ( 7 ): 1155 ‐ 1162. https://doi.org/10.1377/hlthaff.2014.0043
dc.identifier.citedreferenceBarbieri JS, French B, Umscheid CA. Uptake and impact of a clinical diagnostic decision support tool at an academic medical center. Diagnosis. 2015; 2 ( 2 ): 123 ‐ 127. https://doi.org/10.1515/dx‐2014‐0058
dc.identifier.citedreferenceGuise J‐M, Savitz LA, Friedman CP. Mind the gap: putting evidence into practice in the era of learning health systems. J GEN INTERN MED. August 2018. https://doi.org/10.1007/s11606‐018‐4633‐1
dc.identifier.citedreferenceSingh H, Schiff GD, Graber ML, Onakpoya I, Thompson MJ. The global burden of diagnostic errors in primary care. BMJ QualSaf. 2017; 26 ( 6 ): 484 ‐ 494. https://doi.org/10.1136/bmjqs‐2016‐005401
dc.identifier.citedreferenceSociety to Improve Diagnosis in Medicine. The roadmap for research to improve diagnosis, part 1: converting National Academy of Medicine recommendations into policy action. February 2018. http://c.ymcdn.com/sites/www.improvediagnosis.org/resource/resmgr/Roadmap/Policy_Roadmap_for_Diagnosti.pdf..
dc.identifier.citedreferenceWiens J, Shenoy ES, Weinstein RA. Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis.. https://doi.org/10.1093/cid/cix731
dc.identifier.citedreferenceJohnson AEW, Ghassemi MM, Nemati S, Niehaus KE, Clifton DA, Clifford GD. Machine learning and decision support in critical care. Proceedings of the IEEE. 2016; 104 ( 2 ): 444 ‐ 466. https://doi.org/10.1109/JPROC.2015.2501978
dc.identifier.citedreferenceVogel J, Brown JS, Land T, Platt R, Klompas M. MDPHnet: secure, distributed sharing of electronic health record data for public health surveillance, evaluation, and planning. Am J Public Health. 2014; 104 ( 12 ): 2265 ‐ 2270. https://doi.org/10.2105/AJPH.2014.302103
dc.identifier.citedreferenceAmes MJ, Bondy MJ, Johnson MSC, Wade MTD, Davidson PA, Kahn MM. Analysis of federated data sharing platforms for a regional data sharing network. AMIA 2013 Summit on Clinical Research Informatics San Francisco, CA.
dc.identifier.citedreferenceBrown J, Balaconis E, Mazza M, et al. PS1‐46: HMORNnet: shared infrastructure for distributed querying by HMORN collaboratives. Clin Med Res. 2012; 10 ( 3 ): 163 ‐ 164. https://doi.org/10.3121/cmr.2012.1100.ps1‐46
dc.identifier.citedreferenceToh S, Platt R, Steiner JF, Brown JS. Comparative‐effectiveness research in distributed health data networks. Clinical Pharmacology & Therapeutics. 2011; 90 ( 6 ): 883 ‐ 887. https://doi.org/10.1038/clpt.2011.236
dc.identifier.citedreferenceMandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART on FHIR: a standards‐based, interoperable apps platform for electronic health records. J Am Med Inform Assoc. 2016; 23 ( 5 ): 899 ‐ 908. https://doi.org/10.1093/jamia/ocv189
dc.identifier.citedreferenceFlynn AJ, Shi W, Fischer R, Friedman CP. Digital knowledge objects and digital knowledge object clusters: unit holdings in a learning health system knowledge repository. In: 2016 49th Hawaii International Conference on System Sciences (HICSS).; 2016: 3308 ‐ 3317. https://doi.org/10.1109/HICSS.2016.413
dc.identifier.citedreferenceFlynn AJ, Bahulekar N, Boisvert P, et al. Architecture and initial development of a digital library platform for computable knowledge objects for health. Studies in Health Technology and Informatics. 2017; 235: 496 ‐ 500. https://doi.org/10.3233/978‐1‐61499‐753‐5‐496
dc.identifier.citedreferenceNurek M, Kostopoulou O, Delaney BC, Esmail A. Reducing diagnostic errors in primary care. A systematic meta‐review of computerized diagnostic decision support systems by the LINNEAUS collaboration on patient safety in primary care. European Journal of General Practice. 2015; 21 ( sup1 ): 8 ‐ 13. https://doi.org/10.3109/13814788.2015.1043123
dc.identifier.citedreferenceDelaney BC, Kostopoulou O. Decision support for diagnosis should become routine in 21st century primary care. British Journal of General Practice. 2017; 67 ( 664 ): 494 ‐ 495.
dc.identifier.citedreferenceCommittee on Diagnostic Error in Health Care, Board on Health Care Services, Institute of Medicine, The National Academies of Sciences, Engineering, and Medicine. Improving Diagnosis in Health Care. ( Balogh EP, Miller BT, Ball JR, eds.). Washington, D.C.: National Academies Press; 2015. https://doi.org/10.17226/21794
dc.identifier.citedreferenceGraber M. Diagnostic errors in medicine: a case of neglect. Joint Commission Journal on Quality and Patient Safety. 2005; 31 ( 2 ): 106 ‐ 113.
dc.identifier.citedreferenceGraber ML. The incidence of diagnostic error in medicine. BMJ QualSaf. 2013; 22 ( Suppl 2 ): ii21 ‐ ii27. https://doi.org/10.1136/bmjqs‐2012‐001615
dc.identifier.citedreferenceNewman‐Toker DE, Pronovost PJ. Diagnostic errors—the next frontier for patient safety. JAMA. 2009; 301 ( 10 ): 1060 ‐ 1062. https://doi.org/10.1001/jama.2009.249
dc.identifier.citedreferenceNewman‐Toker DE, McDonald KM, Meltzer DO. How much diagnostic safety can we afford, and how should we decide? A health economics perspective. BMJ QualSaf. 2013; 22 ( Suppl 2 ): ii11 ‐ ii20. https://doi.org/10.1136/bmjqs‐2012‐001616
dc.identifier.citedreferenceSchiff GD, Puopolo AL, Huben‐Kearney A, et al. Primary care closed claims experience of Massachusetts malpractice insurers. JAMA Intern Med. 2013; 173 ( 22 ): 2063 ‐ 2068. https://doi.org/10.1001/jamainternmed.2013.11070
dc.identifier.citedreferenceLyratzopoulos G, Vedsted P, Singh H. Understanding missed opportunities for more timely diagnosis of cancer in symptomatic patients after presentation. Br J Cancer. 2015; 112 ( s1 ): S84 ‐ S91. https://doi.org/10.1038/bjc.2015.47
dc.identifier.citedreferenceWachter RM. Why diagnostic errors don’t get any respect—and what can be done about them. Health Aff. 2010; 29 ( 9 ): 1605 ‐ 1610. https://doi.org/10.1377/hlthaff.2009.0513
dc.identifier.citedreferenceRittel HWJ, Webber MM. Dilemmas in a general theory of planning. Policy Sciences. 1973; 4 ( 2 ): 155 ‐ 169.
dc.identifier.citedreferenceInstitute of Medicine. The Learning Healthcare System: Workshop Summary.; 2007. https://doi.org/10.17226/11903
dc.identifier.citedreferenceFriedman CP, Rubin JC, Sullivan KJ. Toward an information infrastructure for global health improvement. Yearbook of Medical Informatics. 2017; 26 ( 01 ): 16 ‐ 23. https://doi.org/10.15265/IY‐2017‐004
dc.identifier.citedreferenceCommittee on the Learning Health Care System in America, The Institute of Medicine. Table: characteristics of a continuously learning health care system. In: Smith M, Saunders R, Stuckhardt L, McGinnis JM, eds. Best Care at Lower Cost: The Path to Continuously Learning Health Care in America. Washington, D.C.: National Academies Press; 2013. http://www.nationalacademies.org/hmd/Reports/2012/Best‐Care‐at‐Lower‐Cost‐The‐Path‐to‐Continuously‐Learning‐Health‐Care‐in‐America/Table.aspx. Accessed July 3, 2018.
dc.identifier.citedreferenceRubin JC, Friedman CP. Weaving together a healthcare improvement tapestry: learning health system brings together health it data stakeholders to share knowledge and improve health. Journal of AHIMA. 2014; 85 ( 5 ): 38 ‐ 43.
dc.identifier.citedreferenceFriedman C, Rubin J, Brown J, et al. Toward a science of learning systems: a research agenda for the high‐functioning learning health system. J Am Med Inform Assoc. 2015; 22 ( 1 ): 43 ‐ 50. https://doi.org/10.1136/amiajnl‐2014‐002977
dc.identifier.citedreferenceSchiff GD. Commentary: diagnosis tracking and health reform. American Journal of Medical Quality. 1994; 9 ( 4 ): 149 ‐ 152. https://doi.org/10.1177/0885713X9400900403
dc.identifier.citedreferenceInstitute of Medicine. To Err Is Human: Building a Safer Health System.; 1999. https://doi.org/10.17226/9728
dc.identifier.citedreferenceSingh H, Giardina TD, Meyer AND, Forjuoh SN, Reis MD, Thomas EJ. Types and origins of diagnostic errors in primary care settings. JAMA Intern Med. 2013; 173 ( 6 ): 418 ‐ 425. https://doi.org/10.1001/jamainternmed.2013.2777
dc.identifier.citedreferenceSingh H, Sittig DF. Advancing the science of measurement of diagnostic errors in healthcare: the Safer Dx framework. BMJ QualSaf. 2015; 24 ( 2 ): 103 ‐ 110. https://doi.org/10.1136/bmjqs‐2014‐003675
dc.identifier.citedreferenceSchiff GD, Hasan O, Kim S, et al. Diagnostic error in medicine: analysis of 583 physician‐reported errors. Arch Intern Med. 2009; 169 ( 20 ): 1881 ‐ 1887. https://doi.org/10.1001/archinternmed.2009.333
dc.identifier.citedreferenceNewman‐Toker DE. A unified conceptual model for diagnostic errors: underdiagnosis, overdiagnosis, and misdiagnosis. Diagnosis. 2014; 1 ( 1 ): 43 ‐ 48. https://doi.org/10.1515/dx‐2013‐0027
dc.identifier.citedreferenceGupta A, Harrod M, Quinn M, Manojlovich M, Fowler KE, Singh H, Saint S, Chopra V. Mind the overlap: how system problems contribute to cognitive failure and diagnostic errors. Diagnosis. 2018;0(0). doi: https://doi.org/10.1515/dx‐2018‐0014
dc.identifier.citedreferenceKostopoulou O, Porat T, Corrigan D, Mahmoud S, Delaney BC. Diagnostic accuracy of GPs when using an early‐intervention decision support system: a high‐fidelity simulation. Br J Gen Pract. 2017; 67 ( 656 ): e201 ‐ e208. https://doi.org/10.3399/bjgp16X688417
dc.identifier.citedreferenceZhang Y, Padman R, Epner P, Bauer V, Solomonides A, Rao G. Identifying diagnostic paths for undifferentiated abdominal pain from electronic health record data. AMIA Jt Summits TranslSci Proc. 2018; 2017: 290 ‐ 299.
dc.identifier.citedreferenceLiberman AL, Newman‐Toker DE. Symptom‐Disease Pair Analysis of Diagnostic Error (SPADE): a conceptual framework and methodological approach for unearthing misdiagnosis‐related harms using big data. BMJ Quality & Safety. January 2018:bmjqs‐2017‐007032. doi: https://doi.org/10.1136/bmjqs‐2017‐007032
dc.identifier.citedreferenceMurphy DR, Wu L, Thomas EJ, Forjuoh SN, Meyer AND, Singh H. Electronic trigger‐based intervention to reduce delays in diagnostic evaluation for cancer: a cluster randomized controlled trial. JCO. 2015; 33 ( 31 ): 3560 ‐ 3567. https://doi.org/10.1200/JCO.2015.61.1301
dc.identifier.citedreferencePoplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering. February 2018: 1. https://doi.org/10.1038/s41551‐018‐0195‐0
dc.identifier.citedreferenceBejnordi BE, Veta M, van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017; 318 ( 22 ): 2199 ‐ 2210. https://doi.org/10.1001/jama.2017.14585
dc.identifier.citedreferenceArdila D, Kiraly AP, Bharadwaj S, et al. End‐to‐end lung cancer screening with three‐dimensional deep learning on low‐dose chest computed tomography. Nature Medicine. 2019;( 1 ). https://doi.org/10.1038/s41591‐019‐0447‐x
dc.identifier.citedreferenceDuke‐Margolis Center for Health Policy. Current State and Near‐Term Priorities for AI‐Enabled Diagnostic Support Software in Health Care.; 2019: 51. https://healthpolicy.duke.edu/sites/default/files/atoms/files/dukemargolisaienableddxss.pdf.
dc.identifier.citedreferenceNaylor CD. On the prospects for a (deep) learning health care system. JAMA. 2018. https://doi.org/10.1001/jama.2018.11103
dc.identifier.citedreferenceStead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018. https://doi.org/10.1001/jama.2018.11029
dc.identifier.citedreferenceShah ND, Steyerberg EW, Kent DM. Big data and predictive analytics: recalibrating expectations. JAMA. 2018; 320 ( 1 ): 27 ‐ 28. https://doi.org/10.1001/jama.2018.5602
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.