Show simple item record

Similar Glacial‐Interglacial δ15N Variations in Two MIS 13–10 Sediment Sequences in the Western North Atlantic Ocean: Changes in Nitrogen Sources, Denitrification, or Diagenesis?

dc.contributor.authorMeyers, Philip A.
dc.contributor.authorPoli, Maria Serena
dc.contributor.authorThunell, Robert C.
dc.date.accessioned2020-02-05T15:06:39Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-02-05T15:06:39Z
dc.date.issued2019-12
dc.identifier.citationMeyers, Philip A.; Poli, Maria Serena; Thunell, Robert C. (2019). "Similar Glacial‐Interglacial δ15N Variations in Two MIS 13–10 Sediment Sequences in the Western North Atlantic Ocean: Changes in Nitrogen Sources, Denitrification, or Diagenesis?." Paleoceanography and Paleoclimatology 34(12): 2171-2182.
dc.identifier.issn2572-4517
dc.identifier.issn2572-4525
dc.identifier.urihttps://hdl.handle.net/2027.42/153660
dc.description.abstractWe have determined total organic carbon‐mass accumulation rates (TOC‐MARs) and δ15N values in Marine Isotope Stages (MIS) 13–10 sediments from two oligotrophic parts of the western North Atlantic Ocean—Ocean Drilling Program (ODP) Site 1063 on the Bermuda Rise and Site 1058 on the Blake Outer Ridge. Both TOC‐MARs and δ15N values vary significantly in these depositional records. TOC‐MARs are highest in sediments deposited at Site 1063 during MIS 12 and MIS 10, implying marine productivity or TOC preservation increased at this location during glacial stages, and low TOC‐MARs during most of MIS 11 in Site 1063 sediment imply low rates during this warm interval. In contrast to the Site 1063 record, productivity or preservation appears to have been greater at Site 1058 during parts of the MIS 11 interglacial than during the glacial intervals. Unlike the TOC‐MAR records, δ15N values at both locations exhibit similar glacial‐interglacial alternations. Values peak during substage 11.3 and gradually decrease toward the terminations of MIS 12 and MIS 10. The similarity of the δ15N patterns at these two sites implies that nitrogen cycling at these locations is largely independent of changes in local surface production of organic matter, and the higher δ15N values are unlikely to result from denitrification. Instead, the δ15N alternations likely result from glacial‐interglacial alternations between higher rates of sediment delivery to these western North Atlantic locations during glacial periods that favored TOC preservation and lower rates during interglacials that allowed more TOC degradation and associated diagenetic alteration of its nitrogen isotopic composition, leading to higher sediment δ15N values.Key PointsAlternations between high interglacial and low glacial δ15N values are reported in MIS 13‐10 sediments from western North Atlantic locationsHigh δ15N values are associated with low sediment accumulation rates and low δ15N values with high sedimentation ratesDiagenetic alteration of organic matter increased δ15N values more in slowly accumulating interglacial sediments than in glacial intervals
dc.publisherWiley
dc.subject.otherglacial‐interglacial cycles
dc.subject.otherBlake Outer Ridge
dc.subject.otherBermuda Rise
dc.subject.othersediment accumulation rates
dc.subject.otherdiagenesis
dc.subject.otherdenitrification
dc.titleSimilar Glacial‐Interglacial δ15N Variations in Two MIS 13–10 Sediment Sequences in the Western North Atlantic Ocean: Changes in Nitrogen Sources, Denitrification, or Diagenesis?
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153660/1/palo20825.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153660/2/palo20825_am.pdf
dc.identifier.doi10.1029/2019PA003648
dc.identifier.sourcePaleoceanography and Paleoclimatology
dc.identifier.citedreferenceRobinson, R. S., Kienast, M., Luiza Albuquerque, A., Altabet, M., Contreras, S., de Pol Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T. C., Ivanochko, T., Jaccard, S., Kao, S. J., Kiefer, T., Kienast, S., Lehmann, M., Martinez, P., McCarthy, M., Möbius, J., Pedersen, T., Quan, T. M., Ryabenko, E., Schmittner, A., Schneider, R., Schneider‐Mor, A., Shigemitsu, M., Sinclair, D., Somes, C., Studer, A., Thunell, R., & Yang, J. Y. ( 2012 ). A review of nitrogen isotope alteration in marine sediments. Paleoceanography, 27, PA4203. https://doi.org/10.1029/2012PA002321
dc.identifier.citedreferenceMeyers, P. A., & Bernasconi, S. ( 2006 ). Data report: Organic carbon, total nitrogen, carbonate carbon and carbonate oxygen isotopic compositions of Albian to Santonian black shales from Sites 1257‐1261 on the Demerara Rise. In Mosher, D.C., Erbacher, J, & Malone, M.J. Proceedings of the ocean drilling program, scientific results, Volume, 207, 1 – 13. https://doi.org/10.2973/odp.proc.sr.207.106.2006
dc.identifier.citedreferenceMöbius, J. ( 2013 ). Isotope fractionation during nitrogen remineralization (ammonification): Implications for nitrogen isotope biogeochemistry. Geochimica et Cosmochimica Acta, 105, 422 – 432.
dc.identifier.citedreferencePeterson, B. J., & Fry, B. ( 1987 ). Stable isotopes in ecosystem studies. Annual Reviews of Ecological Systematics, 18, 293 – 320.
dc.identifier.citedreferencePoli, M. S., Meyers, P. A., & Thunell, R. C. ( 2010 ). The western North Atlantic record of MIS 13 to 10: Changes in primary productivity, organic carbon accumulation, and benthic foraminiferal assemblages in sediments from the Blake Outer Ridge (ODP Site 1058). Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 89 – 101.
dc.identifier.citedreferencePoli, M. S., Meyers, P. A., Thunell, R. C., & Capodivacca, M. ( 2012 ). Glacial‐interglacial variations in sediment organic carbon accumulation and benthic foraminiferal assemblages on the Bermuda Rise (ODP Site 1063) during MIS 13 to 10. Paleoceanography, 27, PA3216. https://doi.org/10.1029/2012PA002314
dc.identifier.citedreferencePoli, M. S., Thunell, R. C., & Rio, D. ( 2000 ). Millennial‐scale changes in North Atlantic deep water circulation during marine isotope stages 11 and 12: Linkage to Antarctic climate. Geology, 28, 807 – 810.
dc.identifier.citedreferencePride, C., Thunell, R., Sigman, D., Keigwin, L., & Altabet, M. ( 1999 ). Nitrogen isotopic variations in the Gulf of California since the last deglaciation: Response to global climate change. Paleoceanography, 14, 397 – 409.
dc.identifier.citedreferenceRen, H., Sigman, D. M., Meckler, A. N., Plessen, B., Robinson, R. S., Rosenthal, Y., & Haug, G. H. ( 2009 ). Foraminiferal isotopic evidence of reduced nitrogen fixation in the Ice Age Atlantic Ocean. Science, 323 ( 5911 ), 244 – 248. https://doi.org/10.1126/science.1165787
dc.identifier.citedreferenceRobinson, R. S., Etourneau, J., Martinez, P. M., & Schneider, R. ( 2014 ). Expansion of pelagic denitrification during early Pleistocene cooling. Earth and Planetary Science Letters, 389, 52 – 61.
dc.identifier.citedreferenceRobinson, R. S., & Meyers, P. A. ( 2002 ). Biogeochemical changes within the Benguela Current upwelling system during the Matuyama Diatom Maximum: Nitrogen isotope evidence from Ocean Drilling Program Sites 1082 and 1084. Paleoceanography, 17 ( 4 ), 1064. https://doi.org/10.1029/2001PA000659
dc.identifier.citedreferenceRobinson, R. S., Mix, A., & Martinez, P. ( 2007 ). Southern Ocean control on the extent of denitrification in the southeastern Pacific. Quaternary Science Reviews, 26, 201 – 212.
dc.identifier.citedreferenceSigman, D. M., Altabet, M. A., McCorkle, D. C., François, R., & Fischer, G. ( 2000 ). The δ 15 N of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean interior. Journal of Geophysical Research, 105, 19,599 – 19,614.
dc.identifier.citedreferenceSlowey, N. C., & Curry, W. B. ( 1995 ). Glacial‐interglacial differences in circulation and carbon cycling within the upper western North Atlantic. Paleoceanography, 10 ( 4 ), 715 – 732.
dc.identifier.citedreferenceStahr, F. R., & Sanford, T. B. ( 1999 ). Transport and bottom boundary layer observations of the North Atlantic Deep Western Boundary Current at the Blake Outer Ridge. Deep‐Sea Research II, 46, 205 – 243.
dc.identifier.citedreferenceStraub, M., Sigman, D. M., Ren, H., Martinez‐Garcia, A., Meckler, N., Han, M. P., & Haug, G. H. ( 2013 ). Changes in North Atlantic nitrogen fixation controlled by ocean circulation. Nature, 501, 200 – 2003.
dc.identifier.citedreferenceSuess, E., & Müller, P. J. ( 1980 ). Productivity, sedimentation rate and sedimentary organic matter in the oceans II.—Elemental fractionation. Biogeochimie de la matire organique a l’interface eau‐sèdiment marin. CNRS Colloques Internationaux, 293, 17 – 26.
dc.identifier.citedreferenceThierstein, H. R., Molfino, B., Geitzenauer, K., & Shackleton, N. J. ( 1977 ). Global synchroneity of late Quaternary coccolith datum levels; validation by oxygen isotopes. Geology, 5, 400 – 404.
dc.identifier.citedreferenceThunell, R. C., & Kepple, A. B. ( 2004 ). Glacial‐Holocene delta N‐15 record from the Gulf of Tehuantepec, Mexico: Implications for denitrification in the eastern equatorial Pacific and change in atmospheric N 2 O. Global Biogeochemical Cycles, 18, GB1001. https://doi.org/10.1029/2002GB002028
dc.identifier.citedreferenceThunell, R. C., Sigman, D. M., Muller‐Karger, F., Astor, Y., & Varela, R. ( 2004 ). Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Global Biogeochemical Cycles, 18, GB3001. https://doi.org/10.1029/2003GB002185
dc.identifier.citedreferenceVerardo, D. J., & McIntyre, A. ( 1994 ). Production and destruction: Control of biogenous sedimentation in the tropical Atlantic 0‐300 000 years BP. Paleoceanography, 9, 63 – 86.
dc.identifier.citedreferenceWada, E., & Hattori, A. ( 1979 ). Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds. Geomicrobiology Journal, 1, 85 – 101.
dc.identifier.citedreferenceWang, W. L., Moore, K., Martiny, A. C., & Primeau, F. W. ( 2019 ). Convergent estimates of marine nitrogen fixation. Nature, 566 ( 7743 ), 205 – 211. https://doi.org/10.1038/s41586‐019‐0911‐2
dc.identifier.citedreferenceGaneshram, R. S., Pedersen, T. F., Calvert, S. E., & Murray, J. W. ( 1995 ). Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature, 376, 755 – 758.
dc.identifier.citedreferenceAltabet, M. A., & Francois, R. ( 1994 ). Sedimentary nitrogen isotope ratio as a recorder for surface nitrogen utilization. Global Biogeochemical Cycles, 8 ( 1 ), 103 – 116. https://doi.org/10.1029/93GB03396
dc.identifier.citedreferenceAltabet, M. A., Francois, R., Murray, D. W., & Prell, W. L. ( 1995 ). Climate‐related variations in denitrification in the Arabian Sea from sediment 15 N/ 14 N ratios. Nature, 373, 506 – 509.
dc.identifier.citedreferenceAltabet, M. A., Murray, D. W., & Prell, W. L. ( 1999 ). Climatically linked oscillations in Arabian Sea denitrification over the past 1 m.y. Implications for the marine N cycle. Paleoceanography, 14, 732 – 743.
dc.identifier.citedreferenceBerger, A., & Loutre, M. F. ( 1991 ). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10 ( 4 ), 297 – 317.
dc.identifier.citedreferenceBertrand, P., Pedersen, T. F., Martinez, P., Calvert, S., & Shimmield, G. ( 2000 ). Sea level impact on nutrient cycling in coastal upwelling areas during deglaciation: Evidence from nitrogen isotopes. Global Biogeochemical Cycles, 14 ( 1 ), 341 – 355.
dc.identifier.citedreferenceBrandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, D. A., & Nagvi, S. W. A. ( 1998 ). Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnology and Oceanography, 43, 1680 – 1689.
dc.identifier.citedreferenceCodispoti, L. A. ( 1989 ). Phosphorus vs. nitrogen limitation of new and export production. In G. Wefer (Ed.), Productivity of the ocean: Present and past (pp. 377 – 394 ). NY: Wiley.
dc.identifier.citedreferenceDubois‐Dauphin, Q., Bonneau, L., Colin, C., Montero‐Serrano, J. C., Montagna, P., Blamart, D., Hebbeln, D., Van Rooij, D., Pons‐Branchu, E., Hemsing, F., & Wefing, A. M. ( 2016 ). South Atlantic intermediate water advances into the north‐east Atlantic during Atlantic meridional overturning circulation during the last glacial period. Geochemistry, Geophysics, Geosystems, 17, 2336 – 2353. https://doi.org/10.1002/2016GC006281
dc.identifier.citedreferenceDugdale, R. C., & Goering, J. J. ( 1967 ). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12, 196 – 206.
dc.identifier.citedreferenceEmmer, E., & Thunell, R. C. ( 2000 ). Nitrogen isotope variations in Santa Barbara basin sediments: Implications for denitrification in the eastern tropical North Pacific during the last 50,000 years. Paleoceanography, 15 ( 4 ), 377 – 387.
dc.identifier.citedreferenceFreudenthal, T., Wagner, T., Wenzhöffer, F., Zabel, M., & Wefer, G. ( 2001 ). Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes. Geochimica et Cosmochimica Acta, 65, 1795 – 1808.
dc.identifier.citedreferenceGalbraith, E. D., Kienast, M., & NICOPP working group ( 2013 ). The acceleration of oceanic denitrification during deglacial warming. Nature Geoscience, 6. https://doi.org/10.1038/NGEO1832
dc.identifier.citedreferenceGalbraith, E. D., Kienast, M., Pedersen, T. F., & Calvert, S. E. ( 2004 ). Glacial‐interglacial modulation of the marine nitrogen cycle by high‐latitude O 2 supply to the global thermocline. Paleoceanography, 19, PA4007. https://doi.org/10.1029/2003PA001000
dc.identifier.citedreferenceGalbraith, E. D., Sigman, D. M., Robinson, R. S., & Pedersen, T. F. ( 2008 ). Nitrogen in past marine environments. In D. Capone, D. Bronk, M. Mulholland, & E. Carpenter (Eds.), Nitrogen in the marine environment (pp. 1497 – 1535 ). Cambridge, MA: Academic Press.
dc.identifier.citedreferenceGaneshram, R. S., & Pedersen, T. F. ( 1998 ). Glacial‐interglacial variability in upwelling and bioproductivity off NW Mexico: Implications to Quaternary paleoclimate. Paleoceanography, 13, 634 – 645.
dc.identifier.citedreferenceGaneshram, R. S., Pedersen, T. F., Calvert, S. E., & François, R. ( 2002 ). Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature, 415, 156 – 159.
dc.identifier.citedreferenceGaneshram, R. S., Pedersen, T. F., Calvert, S. E., McNeill, G. W., & Fontugne, M. R. ( 2000 ). Glacial‐interglacial variability in denitrification in the world’s oceans: Causes and consequences. Paleoceanography, 15, 361 – 376.
dc.identifier.citedreferenceGil, I. M., Keigwin, L. D., & Abrantes, F. G. ( 2009 ). Deglacial diatom productivity and surface ocean properties over the Bermuda Rise, northeast Sargasso Sea. Paleoceanography, 24, PA4101. https://doi.org/10.1029/2008PA001729
dc.identifier.citedreferenceHaug, G. H., Pederson, T. F., Sigman, D. M., Calvert, S. E., Nielsen, B., & Peterson, L. C. ( 1998 ). Glacial/interglacial variations in production and nitrogen fixation in the Cariaco Basin during the last 580 kyr. Paleoceanography, 13, 427 – 432.
dc.identifier.citedreferenceHealey, S., & Thunell, R. ( 2004 ). Millennial‐scale variability in western subtropical North Atlantic surface and deep water circulation during marine isotope stages 11 and 12. Paleoceanography, 19, PA1013. https://doi.org/10.1029/2003PA000925
dc.identifier.citedreferenceKeigwin, L. D., & Jones, G. ( 1989 ). Glacial‐Holocene stratigraphy, chronology, and paleoceanographic observations on some North Atlantic sediment drifts. Deep‐Sea Research, 36, 845 – 867.
dc.identifier.citedreferenceKeigwin, L. D., & Jones, G. ( 1994 ). Western North Atlantic evidence for millennial‐scale changes in ocean circulation and climate. Journal of Geophysical Research, 99, 12,397 – 11,241.
dc.identifier.citedreferenceKeigwin, L. D., Rio, D., & Acton, G. D. ( 1998 ). Shipboard Scientific Party. Proceedings of the ocean drilling program, initial reports, 172.
dc.identifier.citedreferenceKeinast, M. ( 2000 ). Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle. Paleoceanography, 15, 214 – 253.
dc.identifier.citedreferenceKienast, S. S., Calvert, S. E., & Pedersen, T. F. ( 2002 ). Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: Surface and subsurface paleoceanography. Paleoceanography, 17 ( 4 ), 1055. https://doi.org/10.1029/2001PA000650
dc.identifier.citedreferenceKnapp, A. N., Sigman, D. M., & Lipschultz, F. ( 2005 ). N isotope composition of dissolved organic matter and nitrate at the Bermuda Atlantic time‐series study site. Global Biogeochemical Cycles, 19, GB1018. https://doi.org/10.1029/2004GB002320
dc.identifier.citedreferenceLisiecki, L. E., & Raymo, M. E. ( 2005 ). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography, 20, PA1003. https://doi.org/10.1029/2004PA001071
dc.identifier.citedreferenceLiu, Z., Altabet, M. A., & Herbert, T. D. ( 2008 ). Plio‐Pleistocene denitrification in the eastern tropical North Pacific: Intensification at 2.1 Ma. Geochemistry, Geophysics, Geosystems, 9, Q11006. https://doi.org/10.1029/2008GC002044
dc.identifier.citedreferenceMartinez, P. M., & Robinson, R. S. ( 2010 ). Increase in water column denitrification during the last deglaciation: The influence of oxygen demand in the eastern equatorial Pacific. Biogeosciences, 7, 1 – 9.
dc.identifier.citedreferenceMeissner, K. J., Galbraith, E. D., & Völker, C. ( 2005 ). Denitrification under glacial and interglacial conditions: A physical approach. Paleoceanography, 20, PA3001. https://doi.org/10.1029/2004PA001083
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.