Show simple item record

Frontal theta and posterior alpha in resting EEG: A critical examination of convergent and discriminant validity

dc.contributor.authorSmith, Ezra E.
dc.contributor.authorTenke, Craig E.
dc.contributor.authorDeldin, Patricia J.
dc.contributor.authorTrivedi, Madhukar H.
dc.contributor.authorWeissman, Myrna M.
dc.contributor.authorAuerbach, Randy P.
dc.contributor.authorBruder, Gerard E.
dc.contributor.authorPizzagalli, Diego A.
dc.contributor.authorKayser, Jürgen
dc.date.accessioned2020-02-05T15:07:02Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-02-05T15:07:02Z
dc.date.issued2020-02
dc.identifier.citationSmith, Ezra E.; Tenke, Craig E.; Deldin, Patricia J.; Trivedi, Madhukar H.; Weissman, Myrna M.; Auerbach, Randy P.; Bruder, Gerard E.; Pizzagalli, Diego A.; Kayser, Jürgen (2020). "Frontal theta and posterior alpha in resting EEG: A critical examination of convergent and discriminant validity." Psychophysiology (2): n/a-n/a.
dc.identifier.issn0048-5772
dc.identifier.issn1469-8986
dc.identifier.urihttps://hdl.handle.net/2027.42/153675
dc.description.abstractPrior research has identified two resting EEG biomarkers with potential for predicting functional outcomes in depression: theta current density in frontal brain regions (especially rostral anterior cingulate cortex) and alpha power over posterior scalp regions. As little is known about the discriminant and convergent validity of these putative biomarkers, a thorough evaluation of these psychometric properties was conducted toward the goal of improving clinical utility of these markers. Resting 71‐channel EEG recorded from 35 healthy adults at two sessions (1‐week retest) were used to systematically compare different quantification techniques for theta and alpha sources at scalp (surface Laplacian or current source density [CSD]) and brain (distributed inverse; exact low resolution electromagnetic tomography [eLORETA]) level. Signal quality was evaluated with signal‐to‐noise ratio, participant‐level spectra, and frequency PCA covariance decomposition. Convergent and discriminant validity were assessed within a multitrait‐multimethod framework. Posterior alpha was reliably identified as two spectral components, each with unique spatial patterns and condition effects (eyes open/closed), high signal quality, and good convergent and discriminant validity. In contrast, frontal theta was characterized by one low‐variance component, low signal quality, lack of a distinct spectral peak, and mixed validity. Correlations between candidate biomarkers suggest that posterior alpha components constitute reliable, convergent, and discriminant biometrics in healthy adults. Component‐based identification of spectral activity (CSD/eLORETA‐fPCA) was superior to fixed, a priori frequency bands. Improved quantification and conceptualization of frontal theta is necessary to determine clinical utility.Magnitude of frontal theta (rostral ACC eLORETA source amplitude) and posterior alpha (spectral components of scalp current source density) at rest have been considered candidate EEG biomarkers of depression outcomes. Given inconsistent findings, we examined the discriminant and convergent validity of these measures in healthy adults. Unlike theta, two distinct alpha components constituted reliable, convergent, and discriminant biometrics. While results have marked implications for clinical utility, we make several recommendations for improving the psychometric properties of resting frontal theta.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othervalidity
dc.subject.othercurrent source density (CSD)
dc.subject.otherfrequency PCA
dc.subject.othersource localization (LORETA)
dc.subject.othertheta/alpha oscillations
dc.subject.otherEEG biomarkers
dc.titleFrontal theta and posterior alpha in resting EEG: A critical examination of convergent and discriminant validity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153675/1/psyp13483.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153675/2/psyp13483_am.pdf
dc.identifier.doi10.1111/psyp.13483
dc.identifier.sourcePsychophysiology
dc.identifier.citedreferencePizzagalli, D. A. ( 2011 ). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology, 36 ( 1 ), 183 – 206. https://doi.org/10.1038/npp.2010.166
dc.identifier.citedreferencePopov, T., Popova, P., Harkotte, M., Awiszus, B., Rockstroh, B., & Miller, G. A. ( 2018 ). Cross‐frequency interactions between frontal theta and posterior alpha control mechanisms foster working memory. NeuroImage, 181, 728 – 733. https://doi.org/10.1016/j.neuroimage.2018.07.067
dc.identifier.citedreferenceRentzsch, J., Adli, M., Wiethoff, K., Gómez‐Carrillo de Castro, A., Gallinat, J. ( 2014 ). Pretreatment anterior cingulate activity predicts antidepressant treatment response in major depressive episodes. European Archives of Psychiatry and Clinical Neuroscience, 264 (3), 213 – 223. https://doi.org/10.1007/s00406-013-0424-1
dc.identifier.citedreferenceSadaghiani, S., & Kleinschmidt, A. ( 2016 ). Brain networks and α‐oscillations: Structural and functional foundations of cognitive control. Trends in Cognitive Sciences, 20 ( 11 ), 805 – 817. https://doi.org/10.1016/j.tics.2016.09.004
dc.identifier.citedreferenceSauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. ( 2010 ). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience and Biobehavioral Reviews, 34 ( 7 ), 1015 – 1022. https://doi.org/10.1016/j.neubiorev.2009.12.006
dc.identifier.citedreferenceSchacter, D. ( 1977 ). EEG theta waves and physiological phenomena: A review and analysis. Biological Psychology, 5 ( 1 ), 47 – 82. https://doi.org/10.1016/0301-0511(77)90028-X
dc.identifier.citedreferenceScharf, F., & Nestler, S. ( 2018 ). Principles behind variance misallocation in temporal exploratory factor analysis for ERP data: Insights from an inter‐factor covariance decomposition. International Journal of Psychophysiology, 128, 119 – 136. https://doi.org/10.1016/j.ijpsycho.2018.03.019
dc.identifier.citedreferenceScheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. ( 2008 ). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67 ( 3 ), 242 – 251. https://doi.org/10.1016/j.ijpsycho.2007.05.017
dc.identifier.citedreferenceSchmidt, F. M., Sander, C., Dietz, M.‐E., Nowak, C., Schröder, T., Mergl, R., … Hegerl, U. ( 2017 ). Brain arousal regulation as response predictor for antidepressant therapy in major depression. Scientific Reports, 7, 1 – 10. https://doi.org/10.1038/srep45187
dc.identifier.citedreferenceShackman, A., McMenamin, B., Maxwell, J., Greischar, L., & Davidson, R. J. ( 2010 ). Identifying robust and sensitive frequency bands for interrogating neural oscillations. NeuroImage, 51 ( 4 ), 1319 – 1333. https://doi.org/10.1016/j.neuroimage.2010.03.037
dc.identifier.citedreferenceSmith, E. E., Cavanagh, J. F., & Allen, J. J. B. B. ( 2018 ). Intracranial source activity (eLORETA) related to scalp‐level asymmetry scores and depression status. Psychophysiology, 55 ( 1 ), 1 – 16. https://doi.org/10.1111/psyp.13019
dc.identifier.citedreferenceSmith, E. E., Reznik, S. J., Stewart, J. L., & Allen, J. J. B. ( 2017 ). Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. International Journal of Psychophysiology, 111, 98 – 114. https://doi.org/10.1016/j.ijpsycho.2016.11.005
dc.identifier.citedreferenceSockeel, S., Schwartz, D., Pélégrini‐issac, M., & Benali, H. ( 2016 ). Large‐scale functional networks identified from resting‐state EEG using spatial ICA. PLoS ONE, 1–18, https://doi.org/10.5061/dryad.v9f16
dc.identifier.citedreferenceStewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. B. ( 2011 ). Frontal EEG asymmetry during emotional challenge differentiates individuals with and without lifetime major depressive disorder. Journal of Affective Disorders, 129 ( 1–3 ), 167 – 174. https://doi.org/10.1016/j.jad.2010.08.029
dc.identifier.citedreferenceStrijkstra, A. M., Beersma, D. G. M., Drayer, B., Halbesma, N., & Daan, S. ( 2003 ). Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram. Neuroscience Letters, 340 ( 1 ), 17 – 20. https://doi.org/10.1016/S0304-3940(03)00033-8
dc.identifier.citedreferenceTenke, C. E., & Kayser, J. ( 2005 ). Reference‐free quantification of EEG spectra: Combining current source density (CSD) and frequency principal components analysis (fPCA). Clinical Neurophysiology, 116 ( 12 ), 2826 – 2846. https://doi.org/10.1016/j.clinph.2005.08.007
dc.identifier.citedreferenceTenke, C. E., & Kayser, J. ( 2012 ). Generator localization by current source density (CSD): Implications of volume conduction and field closure at intracranial and scalp resolutions. Clinical Neurophysiology, 123 ( 12 ), 2328 – 2345. https://doi.org/10.1016/j.clinph.2012.06.005
dc.identifier.citedreferenceTenke, C. E., & Kayser, J. ( 2015 ). Surface Laplacians (SL) and phase properties of EEG rhythms: Simulated generators in a volume-conduction model. International Journal of Psychophysiology, 97 ( 3 ), 285 – 298. https://doi.org/10.1016/j.ijpsycho.2015.05.008
dc.identifier.citedreferenceTenke, C. E., Kayser, J., Abraham, K., Alvarenga, J. E., & Bruder, G. E. ( 2015 ). Posterior EEG alpha at rest and during task performance: Comparison of current source density and field potential measures. International Journal of Psychophysiology, 97 ( 3 ), 299 – 309. https://doi.org/10.1016/j.ijpsycho.2015.05.011
dc.identifier.citedreferenceTenke, C. E., Kayser, J., Manna, C. G., Fekri, S., Kroppmann, C. J., Schaller, J. D., … Bruder, G. E. ( 2011 ). Current source density measures of electroencephalographic alpha predict antidepressant treatment response. Biological Psychiatry, 70 ( 4 ), 388 – 394. https://doi.org/10.1016/j.biopsych.2011.02.016
dc.identifier.citedreferenceTenke, C. E., Kayser, J., Pechtel, P., Webb, C. A., Dillon, D. G., Goer, F., … Trivedi, M. ( 2017 ). Demonstrating test‐retest reliability of electrophysiological measures for healthy adults in a multisite study of biomarkers of antidepressant treatment response. Psychophysiology, 54 ( 1 ), 34 – 50. https://doi.org/10.1111/psyp.12758
dc.identifier.citedreferenceTrivedi, M. H., Mcgrath, P. J., Fava, M., Parsey, R. V., Benji, T., Phillips, M. L., … Weissman, M. M. ( 2016 ). Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. Journal of Psychiatric Research, 78, 11 – 23. https://doi.org/10.1016/j.jpsychires.2016.03.001.ESTABLISHING
dc.identifier.citedreferenceUlke, C., Tenke, C. E., Kayser, J., Sander, C., Bottger, D., Wong, L. Y. X., … Bruder, G. E. ( 2019 ). Resting EEG Measures of Brain Arousal in a Multisite Study of Major Depression. Clinical EEG and Neuroscience, 50 ( 1 ), 3 – 12. https://doi.org/10.1177/1550059418795578
dc.identifier.citedreferenceUlrich, G., Renfordt, E., & Frick, K. ( 1986 ). The topographical distribution of alpha‐activity in the resting EEG of endogenous‐depressive in‐patients with and without clinical response to pharmacotherapy. Pharmacopsychiatry, 19 ( 4 ), 272 – 273. https://doi.org/10.1055/s-2007-1017230
dc.identifier.citedreferenceUlrich, G., Renfordt, E., Zeller, G., & Frick, K. ( 1984 ). Interrelation between changes in the EEG and psychopathology under pharmacotherapy for endogenous depression. Pharmacopsychiatry, 17 ( 6 ), 178 – 183. https://doi.org/10.1055/s-2007-1017433
dc.identifier.citedreferenceVidaurre, D., Hunt, L. T., Quinn, A. J., Hunt, B. A. E. E., Brookes, M. J., Nobre, A. C., … Quinn, A. J. ( 2018 ). Spontaneous cortical activity transiently organises into frequency specific phase‐coupling networks. Nature Communications, 9 ( 1 ), 2987. https://doi.org/10.1038/s41467-018-05316-z
dc.identifier.citedreferenceWade, E. C., & Iosifescu, D. V. ( 2016 ). Using electroencephalography for treatment guidance in major depressive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1 ( 5 ), 411 – 422. https://doi.org/10.1016/j.bpsc.2016.06.002
dc.identifier.citedreferenceWaters, A. C., & Mayberg, H. S. ( 2017 ). Brain‐based biomarkers for the treatment of depression: Evolution of an idea. Journal of the International Neuropsychological Society, 23 ( 9–10 ), 870 – 880. https://doi.org/10.1017/s1355617717000881
dc.identifier.citedreferenceWeinberg, A., Riesel, A., & Hajcak, G. ( 2012 ). Integrating multiple perspectives on error‐related brain activity: The ERN as a neural indicator of trait defensive reactivity. Motivation and Emotion, 36 ( 1 ), 84 – 100. https://doi.org/10.1007/s11031-011-9269-y
dc.identifier.citedreferenceWestmoreland, B. F., & Klass, D. W. ( 1986 ). Midline theta rhythm. Archives of Neurology, 43 ( 2 ), 139 – 141. https://doi.org/10.1001/archneur.1986.00520020033013
dc.identifier.citedreferenceWhitton, A. E., Webb, C. A., Dillon, D. G., Kayser, J., Rutherford, A., Goer, F., & Adams, P. ( 2019 ). Pretreatment Rostral Anterior Cingulate Cortex Connectivity With Salience Network Predicts Depression Recovery: Findings From the EMBARC Randomized Clinical Trial. Biological Psychiatry, 85 ( 10 ), 872 – 880. https://doi.org/10.1016/j.biopsych.2018.12.007
dc.identifier.citedreferenceWidge, A. S., Bilge, M. T., Montana, R., Chang, W., Rodriguez, C. I., Deckersbach, T., … Nemeroff, C. B. ( 2018 ). Electroencephalographic biomarkers for treatment response prediction in major depressive illness: A meta‐analysis. American Journal of Psychiatry, 176, 44 – 56. https://doi.org/10.1176/appi.ajp.2018.17121358
dc.identifier.citedreferenceAllen, J. J. B., & Cohen, M. X. ( 2010 ). Deconstructing the “resting” state: Exploring the temporal dynamics of frontal alpha asymmetry as an endophenotype for depression. Frontiers in Human Neuroscience, 4, 232. https://doi.org/10.3389/fnhum.2010.00232
dc.identifier.citedreferenceAlschuler, D. M., Tenke, C. E., Bruder, G. E., & Kayser, J. ( 2014 ). Identifying electrode bridging from electrical distance distributions: A survey of publicly‐available EEG data using a new method. Clinical Neurophysiology, 125, 484 – 490. https://doi.org/10.1016/j.clinph.2013.08.024
dc.identifier.citedreferenceArns, M., Bruder, G., Hegerl, U., Spooner, C., Palmer, D. M., Etkin, A., … Gordon, E. ( 2016 ). EEG alpha asymmetry as a gender‐specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT‐D study. Clinical Neurophysiology, 127 ( 1 ), 509 – 519. https://doi.org/10.1016/j.clinph.2015.05.032
dc.identifier.citedreferenceArns, M., Etkin, A., Hegerl, U., Williams, L. M., DeBattista, C., Palmer, D. M., … Gordon, E. ( 2015 ). Frontal and rostral anterior cingulate (rACC) theta EEG in depression: Implications for treatment outcome? European Neuropsychopharmacology, 25 ( 8 ), 1190 – 1200. https://doi.org/10.1016/j.euroneuro.2015.03.007
dc.identifier.citedreferenceArns, M., Gordon, E., & Boutros, N. N. ( 2017 ). EEG Abnormalities Are Associated With Poorer Depressive Symptom Outcomes With Escitalopram and Venlafaxine-XR, but Not Sertraline: Results From the Multicenter Randomized iSPOT-D Study. Clinical EEG and Neuroscience, 48 ( 1 ), 33 – 40. https://doi.org/10.1177/1550059415621435
dc.identifier.citedreferenceAurlien, H., Gjerde, I. O., Aarseth, J. H., Eldøen, G., Karlsen, B., Skeidsvoll, H., & Gilhus, N. E. ( 2004 ). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115 ( 3 ), 665 – 673. https://doi.org/10.1016/j.clinph.2003.10.019
dc.identifier.citedreferenceBarry, R. J., & De Blasio, F. M. ( 2018 ). EEG frequency PCA in EEG‐ERP dynamics. Psychophysiology, 55 ( 5 ), https://doi.org/10.1111/psyp.13042
dc.identifier.citedreferenceBarzegaran, E., Vildavski, V. Y., & Knyazeva, M. G. ( 2017 ). Fine structure of posterior alpha rhythm in human EEG: Frequency components, their cortical sources, and temporal behavior. Scientific Reports, 7 ( 1 ), 1 – 12. https://doi.org/10.1038/s41598-017-08421-z
dc.identifier.citedreferenceBaskaran, A., Farzan, F., Milev, R., Brenner, C. A., Alturi, S., Pat McAndrews, M., … Kennedy, S. H. ( 2017 ). The comparative effectiveness of electroencephalographic indices in predicting response to escitalopram therapy in depression: A pilot study. Journal of Affective Disorders, 227, 542 – 549. https://doi.org/10.1016/j.jad.2017.10.028
dc.identifier.citedreferenceBridwell, D. A., Cavanagh, J. F., Collins, A. G. E., Nunez, M. D., Srinivasan, R., Stober, S., & Calhoun, V. D. ( 2018 ). Moving beyond ERP components: A selective review of approaches to integrate EEG and behavior. Frontiers in Human Neuroscience, 12, 1 – 17. https://doi.org/10.3389/fnhum.2018.00106
dc.identifier.citedreferenceBroadway, J. M., Holtzheimer, P. E., Hilimire, M. R., Parks, N. A., Devylder, J. E., Mayberg, H. S., & Corballis, P. M. ( 2012 ). Frontal theta cordance predicts 6‐month antidepressant response to subcallosal cingulate deep brain stimulation for treatment‐resistant depression: A pilot study. Neuropsychopharmacology, 37 ( 7 ), 1764 – 1772. https://doi.org/10.1038/npp.2012.23
dc.identifier.citedreferenceBruder, G. E., Sedoruk, J. P., Stewart, J. W., McGrath, P. J., Quitkin, F. M., & Tenke, C. E. ( 2008 ). Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: Pre‐ and post‐treatment findings. Biological Psychiatry, 63 ( 12 ), 1171 – 1177. https://doi.org/10.1016/j.biopsych.2007.10.009
dc.identifier.citedreferenceBruder, G. E., Tenke, C. E., Kayser, J. ( 2013 ). Electrophysiological predictors of clinical response to antidepressants. In J. J. Mann, P. J. McGrath, and S. P. Roose (Eds.), The Clinical Handbook for the Management of Mood Disorders (pp. 380 – 393 ). New York: Cambridge University Press. ISBN: 978-1-107-02463-2. https://doi.org/10.1017/cbo9781139175869
dc.identifier.citedreferenceBuzsáki, G. ( 2006 ). Rhythms of the brain. New York, NY, US: Oxford University Press. http://dx.doi.org/10.1093/acprof:oso/9780195301069.001.0001
dc.identifier.citedreferenceCampbell, D. T., & Fiske, D. W. ( 1959 ). Convergent and discriminant validation by the multitrait‐multimethod matrix. Psychological Bulletin, 56 ( 2 ), 88 – 105. https://doi.org/10.1037/h0046016
dc.identifier.citedreferenceCavanagh, J. F., & Frank, M. J. ( 2014 ). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18 ( 8 ), 414 – 421. https://doi.org/10.1016/j.tics.2014.04.012
dc.identifier.citedreferenceCavanagh, J. F., & Shackman, A. J. ( 2015 ). Frontal midline theta reflects anxiety and cognitive control: Meta‐analytic evidence. Journal of Physiology: Paris, 109, 3 – 15. https://doi.org/10.1016/j.jphysparis.2014.04.003
dc.identifier.citedreferenceChatrian, G. E., Bergamini, L., Dondey, M., Klass, D. W., Lennox‐Buchthal, M., & Petersen, I. ( 1974 ). A glossary of terms most commonly used by clinical electroencephalographers. Electroencephalography and Clinical Neurophysiology, 37 ( 5 ), 538 – 548. https://doi.org/10.1016/0013-4694(74)90099-6
dc.identifier.citedreferenceChiang, A. K. I., Rennie, C. J., Robinson, P. A., van Albada, S. J., & Kerr, C. C. ( 2011 ). Age trends and sex differences of alpha rhythms including split alpha peaks. Clinical Neurophysiology, 122 ( 8 ), 1505 – 1517. https://doi.org/10.1016/j.clinph.2011.01.040
dc.identifier.citedreferenceCigánek, L. ( 1961 ). Theta‐discharges in the middle‐line—EEG symptom of temporal lobe epilepsy. Electroencephalography and Clinical Neurophysiology, 13 ( 5 ), 669 – 673. https://doi.org/10.1016/0013-4694(61)90099-2
dc.identifier.citedreferenceCohen, M. X. ( 2011 ). Error‐related medial frontal theta activity predicts cingulate‐related structural connectivity. NeuroImage, 55 ( 3 ), 1373 – 1383. https://doi.org/10.1016/j.neuroimage.2010.12.072
dc.identifier.citedreferenceCohen, M. X. ( 2014a ). A neural microcircuit for cognitive conflict detection and signaling. Trends in Neurosciences, 37 ( 9 ), 480 – 490. https://doi.org/10.1016/j.tins.2014.06.004
dc.identifier.citedreferenceCohen, M. X. ( 2014b ). Analyzing neural time series data: Theory and practice. Cambridge, MA: MIT Press.
dc.identifier.citedreferenceCohen, M. X. ( 2017a ). Comparison of linear spatial filters for identifying oscillatory activity in multichannel data. Journal of Neuroscience Methods, 278, 1 – 12. https://doi.org/10.1016/j.jneumeth.2016.12.016
dc.identifier.citedreferenceCohen, M. X. ( 2017b ). Multivariate cross‐frequency coupling via generalized eigendecomposition. Elife, 6, 1 – 26. https://doi.org/10.7554/elife.21792
dc.identifier.citedreferenceCohen, M. X., & Gulbinaite, R. ( 2017 ). Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation. NeuroImage, 147, 43 – 56. https://doi.org/10.1016/j.neuroimage.2016.11.036
dc.identifier.citedreferenceCohen, M. X., & van Gaal, S. ( 2013 ). Dynamic interactions between large‐scale brain networks predict behavioral adaptation after perceptual errors. Cerebral Cortex, 23 ( 5 ), 1061 – 1072. https://doi.org/10.1093/cercor/bhs069
dc.identifier.citedreferenceCohen, M. X., & van Gaal, S. ( 2014 ). Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors. NeuroImage, 86, 503 – 513. https://doi.org/10.1016/j.neuroimage.2013.10.033
dc.identifier.citedreferenceDebener, S., Ullsperger, M., Siegel, M., & Engel, A. K. ( 2006 ). Single‐trial EEG—fMRI reveals the dynamics of cognitive function. Trends in Cognitive Sciences, 10 ( 12 ), 558 – 563. https://doi.org/10.1016/j.tics.2006.09.010
dc.identifier.citedreferenceDelorme, A., & Makeig, S. ( 2004 ). EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9 – 21. https://doi.org/10.1016/j.jneumeth.2003.10.009
dc.identifier.citedreferenceDelorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. ( 2012 ). Independent EEG sources are dipolar. PLoS ONE, 7 ( 2 ), e30135. https://doi.org/10.1371/journal.pone.0030135
dc.identifier.citedreferenceDien, J., Beal, D. J., & Berg, P. ( 2005 ). Optimizing principal components analysis of event‐related potentials: Matrix type, factor loading weighting, extraction, and rotations. Clinical Neurophysiology, 116, 1808 – 1825. https://doi.org/10.1016/j.clinph.2004.11.025
dc.identifier.citedreferenceFirst, M. B., Gibbon, M., Spitzer, R. L., & Williams, J. B. ( 1996 ). User’s guide for the structured clinical interview for DSM‐IV axis I Disorders—Research version. New York, NY: Biometrics Research Department, New York State Psychiatric Institute.
dc.identifier.citedreferenceFrauscher, B., von Ellenrieder, N., Zelmann, R., Doležalová, I., Minotti, L., Olivier, A., … Gotman, J. ( 2018 ). Atlas of the normal intracranial electroencephalogram: Neurophysiological awake activity in different cortical areas. Brain, 141 ( 4 ), 1130 – 1144. https://doi.org/10.1093/brain/awy035
dc.identifier.citedreferenceGoldenholz, D. M., Ahlfors, S. P., Ha, M. S., Sharon, D., Ishitobi, M., Vaina, L. M., & Stufflebeam, S. M. ( 2009 ). Mapping the signal‐to‐noise‐ratios of cortical sources in magnetoencephalography and electroencephalography. Human Brain Mapping, 1086 ( 4 ), 1077 – 1086. https://doi.org/10.1002/hbm.20571
dc.identifier.citedreferenceHaegens, S., Cousijn, H., Wallis, G., Harrison, P. J., & Nobre, A. C. ( 2014 ). Inter‐ and intra‐individual variability in alpha peak frequency. NeuroImage, 92, 46 – 55. https://doi.org/10.1016/j.neuroimage.2014.01.049
dc.identifier.citedreferenceHolmes, A. P., Blair, R. C., Watson, H. J. D. G., & Ford, I. ( 1996 ). Nonparametric analysis of statistic images from functional mapping experiments. Journal of Cerebral Blood Flow and Metabolism, 16 ( 1 ), 7 – 22. https://doi.org/10.1097/00004647-199601000-00002
dc.identifier.citedreferenceHsieh, L., & Ranganath, C. ( 2014 ). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85, 721 – 729. https://doi.org/10.1016/j.neuroimage.2013.08.003
dc.identifier.citedreferenceHunter, A. M., Cook, I. A., Greenwald, S., Tran, M. L., Miyamoto, K. N., Leuchter, A. F., … Mcmahon, L. L. ( 2011 ). The Antidepressant Treatment Response (ATR) index and treatment outcomes in a placebo‐controlled trial of fluoxetine. Journal of Clinical Neurophysiology, 28 ( 5 ), 478 – 482. https://doi.org/10.1016/j.psyneuen.2009.06.003
dc.identifier.citedreferenceHunter, A. M., Korb, A. S., Cook, I. A., & Leuchter, A. F. ( 2013 ). Rostral anterior cingulate activity in major depressive disorder: State or trait marker of responsiveness to medication? The Journal of Neuropsychiatry and Clinical Neurosciences, 25 ( 2 ), 126 – 133. https://doi.org/10.1176/appi.neuropsych.11110330
dc.identifier.citedreferenceIosifescu, D. V. ( 2011 ). Electroencephalography‐derived biomarkers of antidepressant response. Harvard Review of Psychiatry, 19 ( 3 ), 144 – 154. https://doi.org/10.3109/10673229.2011.586549
dc.identifier.citedreferenceIosifescu, D. V., Greenwald, S., Devlin, P., Mischoulon, D., Denninger, J. W., Alpert, J. E., & Fava, M. ( 2009 ). Frontal EEG predictors of treatment outcome in major depressive disorder. European Neuropsychopharmacology, 19 ( 11 ), 772 – 777. https://doi.org/10.1016/j.euroneuro.2009.06.001
dc.identifier.citedreferenceJaworska, N., de la Salle, S., Ibrahim, M.‐H., Blier, P., & Knott, V. ( 2019 ). Leveraging machine learning approaches for predicting antidepressant treatment response using electroencephalography (EEG) and clinical data. Frontiers in Psychiatry, 9, 1 – 16. https://doi.org/10.3389/fpsyt.2018.00768
dc.identifier.citedreferenceKandilarova, S. S., Terziyski, K. V., Draganova, A. I., Stoyanov, D. S., Akabaliev, V. H., & Kostianev, S. S. ( 2017 ). Response to pharmacological treatment in major depression predicted by electroencephalographic alpha power—A pilot naturalistic study. Folia Medica, 59 ( 3 ), 318 – 325. https://doi.org/10.1515/folmed-2017-0040
dc.identifier.citedreferenceKane, N., Acharya, J., Beniczky, S., Caboclo, L., Finnigan, S., Kaplan, P. W., … van Putten, M. J. A. M. ( 2017 ). A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017. Clinical Neurophysiology Practice, 2, 170 – 185. https://doi.org/10.1016/j.cnp.2017.07.002
dc.identifier.citedreferenceKayser, J. ( 2009 ). Current source density (CSD) interpolation using spherical splines—CSD Toolbox (Version 1.1). Retrieved from http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox
dc.identifier.citedreferenceKayser, J., & Tenke, C. E. ( 2003 ). Optimizing PCA methodology for ERP component identification and measurement: theoretical rationale and empirical evaluation. Clinical Neurophysiology, 114 ( 12 ), 2307 – 2325. https://doi.org/10.1016/s1388-2457(03)00241-4
dc.identifier.citedreferenceKayser, J., & Tenke, C. E. ( 2005 ). Trusting in or breaking with convention: Towards a renaissance of principal components analysis in electrophysiology. Clinical Neurophysiology, 116 ( 8 ), 1747 – 1753. https://doi.org/10.1016/j.clinph.2005.03.020
dc.identifier.citedreferenceKayser, J., & Tenke, C. E. ( 2006a ). Consensus on PCA for ERP data, and sensibility of unrestricted solutions. Clinical Neurophysiology, 117 ( 3 ), 703 – 707. https://doi.org/10.1016/j.clinph.2005.11.015
dc.identifier.citedreferenceKayser, J., & Tenke, C. E. ( 2006b ). Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks. Clinical Neurophysiology, 117 ( 2 ), 348 – 368. https://doi.org/10.1016/j.clinph.2005.08.034
dc.identifier.citedreferenceKayser, J., & Tenke, C. E. ( 2006c ). Electrical distance as a reference‐free measure for identifying artifacts in multichannel electroencephalogram (EEG) recordings. Psychophysiology, 43, S51. Retrieved from http://psychophysiology.cpmc.columbia.edu/mmedia/SPR2006/ElecDistArti.pdf
dc.identifier.citedreferenceKayser, J., & Tenke, C. E. ( 2010 ). In search of the Rosetta Stone for scalp EEG: Converging on reference‐free techniques. Clinical Neurophysiology, 121 ( 12 ), 1973 – 1975. https://doi.org/10.1016/j.clinph.2010.04.030
dc.identifier.citedreferenceKayser, J., & Tenke, C. E. ( 2015a ). Hemifield‐dependent N1 and event‐related theta/delta oscillations: An unbiased comparison of surface Laplacian and common EEG reference choices. International Journal of Psychophysiology, 97 ( 3 ), 258 – 270. https://doi.org/10.1016/j.ijpsycho.2014.12.011
dc.identifier.citedreferenceKayser, J., & Tenke, C. E. ( 2015b ). Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review. International Journal of Psychophysiology, 97 ( 3 ), 189 – 209. https://doi.org/10.1016/j.ijpsycho.2015.04.012
dc.identifier.citedreferenceKayser, J., & Tenke, C. E. ( 2015c ). On the benefits of using surface Laplacian (current source density) methodology in electrophysiology. International Journal of Psychophysiology, 97 ( 3 ), 171 – 173. https://doi.org/10.1016/j.ijpsycho.2015.06.001
dc.identifier.citedreferenceKayser, J., Tenke, C. E., & Debener, S. ( 2000 ). Principal components analysis (PCA) as a tool for identifying EEG frequency bands: I. Methodological considerations and preliminary findings. Psychophysiology, 37, S54. Retrieved from http://psychophysiology.cpmc.columbia.edu/mmedia/SPR2000/fPCA1.pdf
dc.identifier.citedreferenceKeitel, A., & Gross, J. ( 2016 ). Individual human brain areas can be identified from their characteristic spectral activation fingerprints. PLoS Biology, 14 ( 6 ), 1 – 22. https://doi.org/10.1371/journal.pbio.1002498
dc.identifier.citedreferenceKlimesch, W. ( 1999 ). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29 ( 2–3 ), 169 – 195. https://doi.org/10.1016/S0165-0173(98)00056-3
dc.identifier.citedreferenceKlimesch, W. ( 2018 ). The frequency architecture of brain and brain‐body oscillations: An analysis. European Journal of Neuroscience, 48 ( 7 ), 2431 – 2453. https://doi.org/10.1111/ejn.14192
dc.identifier.citedreferenceKnott, V., Mahoney, C., Kennedy, S., & Evans, K. ( 2000 ). Pre‐treatment EEG and it’s relationship to depression severity and paroxetine treatment outcome. Pharmacopsychiatry, 33 ( 6 ), 201 – 205. https://doi.org/10.1055/s-2000-8356
dc.identifier.citedreferenceKnott, V. J., Telner, J. I., Lapierre, Y. D., Browne, M., & Horn, E. R. ( 1996 ). Quantitative EEG in the prediction of antidepressant response to imipramine. Journal of Affective Disorders, 39 ( 3 ), 175 – 184. https://doi.org/10.1016/0165-0327(96)00003-1
dc.identifier.citedreferenceKnyazev, G. G., Slobodskoj‐Plusnin, J. Y., Bocharov, A. V., & Pylkova, L. V. ( 2011 ). The default mode network and EEG alpha oscillations: An independent component analysis. Brain Research, 1402, 67 – 79. https://doi.org/10.1016/j.brainres.2011.05.052
dc.identifier.citedreferenceKorb, A. S., Hunter, A. M., Cook, I. A., & Leuchter, A. F. ( 2009 ). Rostral anterior cingulate cortex theta current density and response to antidepressants and placebo in major depression. Clinical Neurophysiology, 120 ( 7 ), 1313 – 1319. https://doi.org/10.1016/j.jeconom.2010.01.006
dc.identifier.citedreferenceKubicki, S., Herrmann, W. M., Fichte, K., & Freund, G. ( 1979 ). Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmacopsychiatry, 12 ( 2 ), 237 – 245. https://doi.org/10.1055/s-0028-1094615
dc.identifier.citedreferenceKühn, A. A., Tsui, A., Aziz, T., Ray, N., Brücke, C., Kupsch, A., … Brown, P. ( 2009 ). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Experimental Neurology, 215 ( 2 ), 380 – 387. https://doi.org/10.1016/j.expneurol.2008.11.008
dc.identifier.citedreferenceLabounek, R., Bridwell, D. A., Mareček, R., Lamoš, M., Mikl, M., Slavíček, T., … Jan, J. ( 2018 ). Stable scalp EEG spatiospectral patterns across paradigms estimated by group ICA. Brain Topography, 31 ( 1 ), 76 – 89. https://doi.org/10.1007/s10548-017-0585-8
dc.identifier.citedreferenceLeuchter, A. F., Cook, I. A., Gilmer, W. S., Marangell, L. B., Burgoyne, K. S., Howland, R. H., … Greenwald, S. ( 2009 ). Effectiveness of a quantitative electroencephalographic biomarker for predicting differential response or remission with escitalopram and bupropion in major depressive disorder. Psychiatry Research, 169 ( 2 ), 132 – 138. https://doi.org/10.1016/j.psychres.2009.04.004
dc.identifier.citedreferenceLeuchter, A. F., Cook, I. A., Marangell, L. B., Gilmer, W. S., Burgoyne, K. S., Howland, R. H., … Greenwald, S. ( 2009 ). Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in major depressive disorder: Results of the BRITE‐MD study. Psychiatry Research, 169 ( 2 ), 124 – 131. https://doi.org/10.1016/j.psychres.2009.06.004
dc.identifier.citedreferenceLeuchter, A. F., Hunter, A. M., Jain, F. A., Tartter, M., Crump, C., & Cook, I. A. ( 2017 ). Escitalopram but not placebo modulates brain rhythmic oscillatory activity in the first week of treatment of major depressive disorder. Journal of Psychiatric Research, 84, 174 – 183. https://doi.org/10.1016/j.jpsychires.2016.10.002
dc.identifier.citedreferenceLi, C.‐T., Hsieh, J.‐C., Huang, H.‐H., Chen, M.‐H., Juan, C.‐H., Tu, P.‐C., … Su, T.‐P. ( 2016 ). Cognition‐modulated frontal activity in prediction and augmentation of antidepressant efficacy: A randomized controlled pilot study. Cerebral Cortex, 26 ( 1 ), 202 – 210. https://doi.org/10.1093/cercor/bhu191
dc.identifier.citedreferenceLight, G. A., Swerdlow, N. R., Thomas, M. L., Calkins, M. E., Green, M. F., Greenwood, T. A., … Turetsky, B. I. ( 2015 ). Validation of mismatch negativity and P3a for use in multi‐site studies of schizophrenia: Characterization of demographic, clinical, cognitive, and functional correlates in COGS‐2. Schizophrenia Research, 163 ( 1–3 ), 63 – 72. https://doi.org/10.1016/j.schres.2014.09.042
dc.identifier.citedreferenceLorenzo‐Seva, U., & Berge, J. M. F. ( 2006 ). Tucker’ s congruence coefficient as a meaningful index of factor similarity. Methodology, 2 ( 2 ), 57 – 64. https://doi.org/10.1027/1614-2241.2.2.57
dc.identifier.citedreferenceMartín‐Buro, M. C., Garcés, P., & Maestú, F. ( 2016 ). Test‐retest reliability of resting‐state magnetoencephalography power in sensor and source space. Human Brain Mapping, 37 ( 1 ), 179 – 190. https://doi.org/10.1002/hbm.23027
dc.identifier.citedreferenceMayberg, H. S. ( 1997 ). Limbic-cortical dysregulation: a proposed model of depression. Journal of Neuropsychiatry and Clinical Neurosciences, 9 ( 3 ), 471 – 481. https://doi.org/10.1176/jnp.9.3.471
dc.identifier.citedreferenceMcmenamin, B. W., Shackman, A. J., Maxwell, J. S., Bachhuber, D. R. W., Koppenhaver, A. M., Greischar, L. L., & Davidson, R. J. ( 2010 ). Validation of ICA‐based myogenic artifact correction for scalp and source‐localized EEG. NeuroImage, 49 ( 3 ), 2416 – 2432. https://doi.org/10.1016/j.neuroimage.2009.10.010
dc.identifier.citedreferenceMeehl, P. E. ( 1995 ). Bootstraps taxometrics: Solving the classification problem in psychopathology. American Psychologist, 50, 266 – 275. https://doi.org/10.1037/0003-066X.50.4.266
dc.identifier.citedreferenceMichel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & Grave De Peralta, R. ( 2004 ). EEG source imaging. Clinical Neurophysiology, 115 ( 10 ), 2195 – 2222. https://doi.org/10.1016/j.clinph.2004.06.001
dc.identifier.citedreferenceMonti, M. M., Vanhaudenhuyse, A., Coleman, M. R., Boly, M., Pickard, J. D., Tshibanda, L., … Laureys, S. ( 2010 ). Willful modulation of brain activity in disorders of consciousness. New England Journal of Medicine, 362 ( 7 ), 579 – 589. https://doi.org/10.1056/NEJMoa0905370
dc.identifier.citedreferenceMulert, C., Juckel, G., Brunnmeier, M., Karch, S., Leicht, G., Mergl, R., … Pogarell, O. ( 2007 ). Rostral anterior cingulate cortex activity in the theta band predicts response to antidepressive medication. Clinical EEG and Neuroscience, 38 ( 2 ), 78 – 81. https://doi.org/10.1177/155005940703800209
dc.identifier.citedreferenceNäpflin, M., Wildi, M., & Sarnthein, J. ( 2008 ). Test‐retest reliability of EEG spectra during a working memory task. NeuroImage, 43 ( 4 ), 687 – 693. https://doi.org/10.1016/j.neuroimage.2008.08.028
dc.identifier.citedreferenceNunez, P. L., Nunez, M. D., & Srinivasan, R. ( 2019 ). Multi‐scale neural sources of EEG: Genuine, equivalent, and representative. A Tutorial Review. Brain Topography, 32 ( 2 ), 193 – 214. https://doi.org/10.1101/391318
dc.identifier.citedreferenceNunez, P. L., & Srinivasan, R. ( 2006 ). Electric fields of the brain: The neurophysics of EEG. New York, NY: Oxford University Press.
dc.identifier.citedreferenceOlbrich, S., Mulert, C., Karch, S., Trenner, M., Leicht, G., Pogarell, O., & Hegerl, U. ( 2009 ). EEG‐vigilance and b effect during simultaneous EEG/fMRI measurement. NeuroImage, 45 ( 2 ), 319 – 332. https://doi.org/10.1016/j.neuroimage.2008.11.014
dc.identifier.citedreferenceOlvet, D. M., & Hajcak, G. ( 2009 ). The stability of error‐related brain activity with increasing trials. Psychophysiology, 46, 957 – 961. https://doi.org/10.1111/j.1469-8986.2009.00848.x
dc.identifier.citedreferenceOnton, J., Delorme, A., & Makeig, S. ( 2005 ). Frontal midline EEG dynamics during working memory. NeuroImage, 27, 341 – 356. https://doi.org/10.1016/j.neuroimage.2005.04.014
dc.identifier.citedreferenceParra, L., & Sajda, P. ( 2003 ). Blind source separation via generalized eigenvalue decomposition. The Journal of Machine Learning Research, 4, 1261 – 1269. Retrieved from http://dl.acm.org/citation.cfm?xml:id=945365.964305
dc.identifier.citedreferenceParra, L. C., Spence, C. D., Gerson, A. D., & Sajda, P. ( 2005 ). Recipes for the linear analysis of EEG. NeuroImage, 28 ( 2 ), 326 – 341. https://doi.org/10.1016/j.neuroimage.2005.05.032
dc.identifier.citedreferencePascual‐Marqui, R. D. ( 2007 ). Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. ArXiv, 1 – 16. Retrieved from http://arxiv.org/abs/0710.3341
dc.identifier.citedreferencePascual‐Marqui, R. D., Faber, P. L., Kinoshita, T., Kochi, K., Milz, P., Nishida, K., & Yoshimura, M. ( 2018 ). Comparing EEG/MEG neuroimaging methods based on localization error, false positive activity, and false positive connectivity. bioRxiv, 269753.
dc.identifier.citedreferencePascual‐Marqui, R. D., Michel, C. M., & Lehmann, D. ( 1994 ). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18 ( 1 ), 49 – 65. https://doi.org/10.1016/0167-8760(84)90014-X
dc.identifier.citedreferencePatrick, C. J., & Hajcak, G. ( 2016 ). RDoC: Translating promise into progress. Psychophysiology, 53 ( 3 ), 415 – 424. https://doi.org/10.1111/psyp.12612
dc.identifier.citedreferencePerrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. ( 1989 ). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72 ( 2 ), 184 – 187. https://doi.org/10.1016/0013-4694(89)90180-6
dc.identifier.citedreferencePerrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. ( 1990 ). Corrigenda. Electroencephalography and Clinical Neurophysiology, 76, 565 – 566. https://doi.org/10.1016/0013-4694(90)90009-9
dc.identifier.citedreferencePizzagalli, D. A., Oakes, T. R., & Davidson, R. J. ( 2003 ). Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: an EEG/PET study of normal and depressed subjects. Psychophysiology, 40 ( 6 ), 939 – 949. https://doi.org/10.1111/1469-8986.00112
dc.identifier.citedreferencePizzagalli, D., Pascual‐Marqui, R. D., Nitschke, J. B., Oakes, T. R., Larson, C. L., Abercrombie, H. C., … Davidson, R. J. ( 2001 ). Anterior cingulate activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis. The American Journal of Psychiatry, 158 ( 3 ), 405 – 415. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11229981. https://doi.org/10.1176/appi.ajp.158.3.405
dc.identifier.citedreferencePizzagalli, D. A., Webb, C. A., Dillon, D. G., Tenke, C. E., Kayser, J., Goer, F., … Trivedi, M. H. ( 2018 ). Pretreatment rostral anterior cingulate cortex theta activity in relation to symptom improvement in depression: A randomized clinical trial. JAMA Psychiatry, 75 ( 6 ), 547 – 554. https://doi.org/10.1001/jamapsychiatry.2018.0252
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.