Show simple item record

Evoked Potentials Recorded From the Spinal Cord During Neurostimulation for Pain: A Computational Modeling Study

dc.contributor.authorAnaya, Carlos J.
dc.contributor.authorZander, Hans J.
dc.contributor.authorGraham, Robert D.
dc.contributor.authorSankarasubramanian, Vishwanath
dc.contributor.authorLempka, Scott F.
dc.date.accessioned2020-02-05T15:07:04Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-02-05T15:07:04Z
dc.date.issued2020-01
dc.identifier.citationAnaya, Carlos J.; Zander, Hans J.; Graham, Robert D.; Sankarasubramanian, Vishwanath; Lempka, Scott F. (2020). "Evoked Potentials Recorded From the Spinal Cord During Neurostimulation for Pain: A Computational Modeling Study." Neuromodulation: Technology at the Neural Interface 23(1): 64-73.
dc.identifier.issn1094-7159
dc.identifier.issn1525-1403
dc.identifier.urihttps://hdl.handle.net/2027.42/153677
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherspinal cord stimulation
dc.subject.othercomputer simulation
dc.subject.otherspinal cord
dc.subject.otherevoked potentials
dc.subject.otherChronic pain
dc.titleEvoked Potentials Recorded From the Spinal Cord During Neurostimulation for Pain: A Computational Modeling Study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153677/1/ner12965.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153677/2/ner12965_am.pdf
dc.identifier.doi10.1111/ner.12965
dc.identifier.sourceNeuromodulation: Technology at the Neural Interface
dc.identifier.citedreferenceFeirabend HKP, Choufoer H, Ploeger S, Holsheimer J, Van Gool JD. Morphometry of human superficial dorsal and dorsolateral column fibres: Significance to spinal cord stimulation. Brain 2002; 125: 1137 – 1149. https://doi.org/10.1093/brain/awf111.
dc.identifier.citedreferenceParker JL, Laird‐Wah J, Cousins MJ. Comparison of a simple model of dorsal column axons with the electrically evoked compound action potential. Bioelectron Med 2018; 1: 117 – 130. https://doi.org/10.2217/bem-2017-0006.
dc.identifier.citedreferenceTschirhart CE, Finkelstein JA, Whyne CM. Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. J Biomech 2007; 40: 46 – 54. https://doi.org/10.1016/j.jbiomech.2005.11.014.
dc.identifier.citedreferenceKameyama T, Hashizume Y, Sobue G. Morphologic features of the normal human cadaveric spinal cord. Spine 1996; 21: 1285 – 1290. https://doi.org/10.1097/00007632-199606010-00001.
dc.identifier.citedreferenceBozkurt M, Canbay S, Neves GF et al. Microsurgical anatomy of the dorsal thoracic rootlets and dorsal root entry zones. Acta Neurochir 2012; 154: 1235 – 1239. https://doi.org/10.1007/s00701-012-1395-0.
dc.identifier.citedreferenceHolsheimer J, Den Boer JA, Struijk JJ, Rozeboom AR. MR assessment of the normal position of the spinal cord in the spinal canal. Am J Neuroradiol 1994; 15: 951 – 959.
dc.identifier.citedreferenceGrill WM, Mortimer JT. Electrical properties of implant encapsulation tissue. Ann Biomed Eng 1994; 22: 23 – 33. https://doi.org/10.1007/BF02368219.
dc.identifier.citedreferenceKilburn KH, Asmundsson T. Anteroposterior chest diameter in emphysema: From maxim to measurement. Arch Intern Med 1969; 123: 379 – 382. https://doi.org/10.1001/archinte.1969.00300140025006.
dc.identifier.citedreferenceKao MC, Tsai SK, Tsou MY, Lee HK, Guo WY, Hu JS. Paraplegia after delayed detection of inadvertent spinal cord injury during thoracic epidural catheterization in an anesthetized elderly patient. Anesth Analg 2004; 99: 580 – 583. https://doi.org/10.1213/01.ANE.0000130391.62612.3E.
dc.identifier.citedreferenceGaines JL, Finn KE, Slopsema JP, Heyboer LA, Polasek KH. A model of motor and sensory axon activation in the median nerve using surface electrical stimulation. J Comput Neurosci 2018; 45: 29 – 43. https://doi.org/10.1007/s10827-018-0689-5.
dc.identifier.citedreferenceGraham RD, Bruns TM, Duan B, Lempka SF. Dorsal root ganglion stimulation for chronic pain modulates Aβ‐fiber activity but not C‐fiber activity: A computational modeling study. Clin Neurophysiol 2019; 130: 941 – 951.
dc.identifier.citedreferenceHowells J, Trevillion L, Bostock H, Burke D. The voltage dependence of Ih in human myelinated axons. J Physiol 2012; 590: 1625 – 1640. https://doi.org/10.1113/jphysiol.2011.225573.
dc.identifier.citedreferenceMcIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle. J Neurophysiol 2002; 87: 995 – 1006. https://doi.org/10.1152/jn.00353.2001.
dc.identifier.citedreferenceLloyd SP. Least squares quantization in PCM. IEEE Trans Inf Theory 1982; 28: 129 – 137. https://doi.org/10.1109/TIT.1982.1056489.
dc.identifier.citedreferenceHines M, Davison AP, Muller E. NEURON and python. Front Neuroinform 2009; 3: 1. https://doi.org/10.3389/neuro.11.001.2009.
dc.identifier.citedreferenceTowns J, Cockerill T, Dahan M et al. XSEDE: Accelerating scientific discovery. Comput Sci Eng 2014; 16: 62 – 74. https://doi.org/10.1109/MCSE.2014.80.
dc.identifier.citedreferenceMoffitt MA, McIntyre CC. Model‐based analysis of cortical recording with silicon microelectrodes. Clin Neurophysiol 2005; 116: 2240 – 2250. https://doi.org/10.1016/j.clinph.2005.05.018.
dc.identifier.citedreferenceLempka SF, Johnson MD, Moffitt MA, Otto KJ, Kipke DR, McIntyre CC. Theoretical analysis of intracortical microelectrode recordings. J Neural Eng 2011; 8:045006. https://doi.org/10.1088/1741-2560/8/4/045006.
dc.identifier.citedreferenceLempka SF, McIntyre CC. Theoretical analysis of the local field potential in deep brain stimulation applications. PLoS ONE 2013; 8:e59839. https://doi.org/10.1371/journal.pone.0059839.
dc.identifier.citedreferenceBriaire JJ, Frijns JH. Unraveling the electrically evoked compound action potential. Hear Res 2005; 205: 143 – 156. https://doi.org/10.1016/j.heares.2005.03.020.
dc.identifier.citedreferenceKent AR, Grill WM. Analysis of deep brain stimulation electrode characteristics for neural recording. J Neural Eng 2014; 11:046010. https://doi.org/10.1088/1741-2560/11/4/046010.
dc.identifier.citedreferenceHe J, Barolat G, Ketcik B. Stimulation usage range for chronic pain management. Analgesia 1994; 1: 75 – 80. https://doi.org/10.3727/107156994819564401.
dc.identifier.citedreferenceHe J, Barolat G, Holsheimer J, Struijk JJ. Perception threshold and electrode position for spinal cord stimulation. Pain 1994; 59: 55 – 63. https://doi.org/10.1016/0304-3959(94)90047-7.
dc.identifier.citedreferenceLempka SF, Zander H, Anaya CJ, Wyant A, Ozinga JG, Machado AG. Model‐based analysis of spinal cord stimulation for chronic pain. In: Masia L, Micera S, Akay M, Pons J, editors. Converging clinical and engineering research on neurorehabilitation III. ICNR 2018. Biosystems & Biorobotics. Volume 21. Cham: Springer, 2019: 39 – 43.
dc.identifier.citedreferenceMelzack R, Wall PD. Pain mechanisms: A new theory. Science 1965; 150: 971 – 979.
dc.identifier.citedreferenceShealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: Preliminary clinical report. Anesth Analg 1967; 46: 489 – 491.
dc.identifier.citedreferenceZhang TC, Janik JJ, Grill WM. Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain. Brain Res 2014; 1569: 19 – 31. https://doi.org/10.1016/j.brainres.2014.04.039.
dc.identifier.citedreferenceLempka SF, Patil PG. Innovations in spinal cord stimulation for pain. Curr Opin Biomed Eng 2018; 8: 51 – 60. https://doi.org/10.1016/j.cobme.2018.10.005.
dc.identifier.citedreferenceRusso M, Cousins MJ, Brooker C et al. Effective relief of pain and associated symptoms with closed‐loop spinal cord stimulation system: Preliminary results of the Avalon study. Neuromodulation 2018; 21: 38 – 47. https://doi.org/10.1111/ner.12684.
dc.identifier.citedreferenceErtekin C. Studies on the human evoked Electrospinogram: I. The origin of the segmental evoked potentials. Acta Neurol Scand 1976a; 53: 3 – 20. https://doi.org/10.1111/j.1600-0404.1976.tb04321.x.
dc.identifier.citedreferenceErtekin C. Studies on the human evoked Electrospinogram: II. The conduction velocity along the dorsal funiculus. Acta Neurol Scand 1976b; 53: 21 – 38. https://doi.org/10.1111/j.1600-0404.1976.tb04322.x.
dc.identifier.citedreferenceMaruyama Y, Shimoji K, Shimizu H, Kuribayashi H, Fujioka H. Human spinal cord potentials evoked by different sources of stimulation and conduction velocities along the cord. J Neurophysiol 1982; 48: 1098 – 1107. https://doi.org/10.1152/jn.1982.48.5.1098.
dc.identifier.citedreferenceParker JL, Karantonis DM, Single PS, Obradovic M, Cousins MJ. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief. Pain 2012; 153: 593 – 601. https://doi.org/10.1016/j.pain.2011.11.023.
dc.identifier.citedreferenceParker JL, Karantonis DM, Single PS et al. Electrically evoked compound action potentials recorded from the sheep spinal cord. Neuromodulation 2013; 16: 295 – 303. https://doi.org/10.1111/ner.12053.
dc.identifier.citedreferenceOlin JC, Kidd DH, North RB. Postural changes in spinal cord stimulation perceptual thresholds. Neuromodulation 1998; 1: 171 – 175.
dc.identifier.citedreferenceHolsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation 2002; 5: 25 – 31. https://doi.org/10.1046/j.1525-1403.2002._2005.x.
dc.identifier.citedreferenceLee D, Hershey B, Bradley K, Yearwood T. Predicted effects of pulse width programming in spinal cord stimulation: A mathematical modeling study. Med Biol Eng Comput 2011; 49: 765 – 774. https://doi.org/10.1007/s11517-011-0780-9.
dc.identifier.citedreferenceLaird JH, Parker JL. A model of evoked potentials in spinal cord stimulation. In Engineering in Medicine and Biology Society (EMBS) 2013 35th Annual International Conference of the IEEE. IEEE, 2013: 6555 – 6558. https://doi.org/10.1109/EMBC.2013.6611057
dc.identifier.citedreferenceCapogrosso M, Wenger N, Raspopovic S et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci 2013; 33: 19326 – 19340. https://doi.org/10.1523/JNEUROSCI.1688-13.2013.
dc.identifier.citedreferenceHowell B, Lad SP, Grill WM. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS ONE 2014; 9:e114938. https://doi.org/10.1371/journal.pone.0114938.
dc.identifier.citedreferenceLempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology 2015; 122: 1362 – 1376. https://doi.org/10.1097/ALN.0000000000000649.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.