Show simple item record

Episodic Occurrence of Field‐Aligned Energetic Ions on the Dayside

dc.contributor.authorYue, Chao
dc.contributor.authorBortnik, Jacob
dc.contributor.authorZou, Shasha
dc.contributor.authorNishimura, Yukitoshi
dc.contributor.authorFoster, John C.
dc.contributor.authorCoppeans, Thomas
dc.contributor.authorMa, Qianli
dc.contributor.authorZong, Qiugang
dc.contributor.authorHull, A. J.
dc.contributor.authorHenderson, Mike
dc.contributor.authorReeves, Geoffrey D.
dc.contributor.authorSpence, Harlan E.
dc.date.accessioned2020-02-05T15:07:17Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-02-05T15:07:17Z
dc.date.issued2020-01-28
dc.identifier.citationYue, Chao; Bortnik, Jacob; Zou, Shasha; Nishimura, Yukitoshi; Foster, John C.; Coppeans, Thomas; Ma, Qianli; Zong, Qiugang; Hull, A. J.; Henderson, Mike; Reeves, Geoffrey D.; Spence, Harlan E. (2020). "Episodic Occurrence of Field‐Aligned Energetic Ions on the Dayside." Geophysical Research Letters 47(2): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/153687
dc.description.abstractThe tens of kiloelectron volt ions observed in the ring current region at L ~ 3–7 generally have pancake pitch angle distributions, that is, peaked at 90°. However, in this study, by using the Van Allen Probe observations on the dayside, unexpectedly, we have found that about 5% time, protons with energies of ~30 to 50 keV show two distinct populations, having an additional field‐aligned population overlapping with the original pancake population. The newly appearing field‐aligned populations have higher occurrence rates at ~12–16 magnetic local time during geomagnetically active times. In particular, we have studied eight such events in detail and found that the source regions are located around 12 to 18 magnetic local time which coincides with our statistical result. Based on the ionospheric and geosynchronous observations, it is suggested that these energetic ions with field‐aligned pitch angle distributions probably are accelerated near postnoon in association with ionospheric disturbances that are triggered by tail injections.Plain Language SummaryProtons of different sources have different pitch angle distributions (PADs). For example, warm plasma cloak protons, which come directly from the ionosphere, have field‐aligned PADs, while ring current protons that generally originate from tail plasma sheet have pancake‐shaped PADs. In this study, unexpectedly, we have found that about 5% of the time on the dayside, protons of ring current energies show two distinct populations according to their PADs: higher fluxes of field‐aligned populations overlapping with the original pancake populations. The newly appeared field‐aligned populations have higher occurrence rates at ~12–16 magnetic local time during geomagnetically active times. In order to find the mechanism that generates these field‐aligned energetic proton populations, we have studied eight such events in detail by using the low‐altitude DMSP, POES satellites, and the NOAA‐LANL satellite at the geosynchronous orbit. The results imply that these energetic ions with field‐aligned PADs probably are accelerated by ionospheric disturbances that are triggered by tail injections. These results provide evidence of another possibly important source of the ring current ions.Key PointsWe have found that about 5% of the time on the dayside, protons with energies of ~30 to 50 keV have strong field‐aligned PADsThe field‐aligned PADs have higher occurrence rates at ~12‐16 MLT during geomagnetically active timesThese energetic field‐aligned ions possibly are accelerated by ionospheric disturbances triggered by tail injections
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer‐Verlag
dc.subject.otherring current energetic ions
dc.subject.otherionospheric disturbance
dc.subject.othertail injections
dc.subject.otherfield‐aligned PADs
dc.titleEpisodic Occurrence of Field‐Aligned Energetic Ions on the Dayside
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153687/1/grl60102_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153687/2/grl60102.pdf
dc.identifier.doi10.1029/2019GL086384
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceShelley, E. G., Sharp, R. D., & Johnson, R. G. ( 1976 ). Satellite observations of an ionospheric acceleration mechanism. Geophysical Research Letters, 3 ( 11 ), 654 – 656.
dc.identifier.citedreferenceEvans, D. S. ( 1974 ). Precipitation electron fluxes formed by a magnetic field‐aligned potential difference. J. Geophys. Res., 79, 2853.
dc.identifier.citedreferenceFok, M.‐C., Moore, T. E., Brandt, P. C., Delcourt, D. C., Slinker, S. P., & Fedder, J. A. ( 2006 ). Impulsive enhancements of oxygen ions during substorms. J. Geophys. Res., 111, A10222. https://doi.org/10.1029/2006JA011839
dc.identifier.citedreferenceFunsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson, K. C., Kihara, K. H., Lake, J. E., Larsen, B. A., Puckett, A. D., et al. ( 2013 ). Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the Radiation Belt Storm Probes Mission. Space Science Reviews, 179, 423 – 484. https://doi.org/10.1007/s11214‐013‐9968‐7
dc.identifier.citedreferenceGkioulidou, M., Ohtani, S., Ukhorskiy, A. Y., Mitchell, D. G., Takahashi, K., Spence, H. E., Wygant, J. R., Kletzing, C. A., & Barnes, R. J. ( 2019 ). Low energy (< keV) O + outflow directly into the inner magnetosphere: Van Allen Probes Observations. Journal of Geophysical Research: Space Physics, 124, 405 – 419. https://doi.org/10.1029/2018JA025862
dc.identifier.citedreferenceGkioulidou, M., Ukhorskiy, A. Y., Mitchell, D. G., & Lanzerotti, L. J. ( 2016 ). Storm time dynamics of ring current protons: Implications for the long‐term energy budget in the inner magnetosphere. Geophysical Research Letters, 43, 4736 – 4744. https://doi.org/10.1002/2016GL068013
dc.identifier.citedreferenceHull, A. J., Chaston, C. C., Bonnell, J. W., Wygant, J. R., Kletzing, C. A., Reeves, G. D., & Gerrard, A. ( 2019 ). Dispersive Alfvén wave control of O + ion outflow and energy densities in the inner magnetosphere. Geophysical Research Letters, 46, 8597 – 8606. https://doi.org/10.1029/2019GL083808
dc.identifier.citedreferenceKeika, K., Kasahara, S., Yokota, S., Hoshino, M., Seki, K., Nosé, M., Amano, T., Miyoshi, Y., & Shinohara, I. ( 2018 ). Ion energies dominating energy density in the inner magnetosphere: Spatial distributions and composition, observed by Arase/MEP‐i. Geophysical Research Letters, 45, 12,153 – 12,162. https://doi.org/10.1029/2018GL080047
dc.identifier.citedreferenceKletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., Connerney, J., & Crawford, D. ( 2013 ). The Electric and Magnetic Field Instrument Suit and Integrated Science (EMFISIS) on RBSP. Space Sci. Rev.. https://doi.org/10.1007/s11214‐013‐9993‐6
dc.identifier.citedreferenceKrimigis, S. M., McEntire, R. W., Potemra, T. A., Gloeckler, G., Scarf, F. L., & Shelley, E. G. ( 1985 ). Magnetic storm of September 4, 1984—A synthesis of ring current spectra and energy densities measured with AMPTE/CCE. Geophysical Research Letters (ISSN 0094‐8276), 12, 329 ‐ 332. http://doi.org/10.1029/GL012i005p00329.
dc.identifier.citedreferenceLi, W., Thorne, R. M., Nishimura, Y., Bortnik, J., Angelopoulos, V., McFadden, J. P., Larson, D. E., Bonnell, J. W., Le Contel, O., Roux, A., & Auster, U. ( 2010 ). THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation. J. Geophys. Res., 115, A00F11. https://doi.org/10.1029/2009JA014845
dc.identifier.citedreferenceLui, A. T. Y. ( 1996 ). Current disruption in the Earth’s magnetosphere: Observations and models. J. Geophys. Rev., 101, 13,067 – 13,088.
dc.identifier.citedreferenceMauk, B. H. ( 1986 ). Quantitative modeling of the “convection surge” mechanism of ion acceleration. J. Geophys. Res., 91, 13,423 – 13,431.
dc.identifier.citedreferenceMauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. ( 2013 ). Science objectives and rationale for the Radiation Belt Storm Probes Mission. Space Science Reviews, 179, 3 – 27. https://doi.org/10.1007/s11214‐012‐9908‐y
dc.identifier.citedreferenceMauk, B. H., & McIlwain, C. E. ( 1975 ). UCSD auroral particles experiment, IEEE Trans. Aerosp. Electron. Syst., AES‐11, 1125 – 1130.
dc.identifier.citedreferenceNewell, P. T., Lyons, K. M., & Meng, C.‐I. ( 1996 ). A large survey of electron acceleration events. J. Geophys. Res., 101, 2599.
dc.identifier.citedreferenceNose, M., Lui, A. T. Y., Ohtani, S., Mauk, B. H., McEntire, R. W., Williams, D. J., Mukai, T., & Yumoto, K. ( 2000 ). Acceleration of oxygen ions of ionospheric origin in the near‐Earth magnetotail during substorms. J. Geophys. Res., 105, 7669 – 7677.
dc.identifier.citedreferenceRoederer, J. G. ( 1967 ). On the adiabatic motion of energetic particles in a model magnetosphere. Journal of Geophysical Research, 72 ( 3 ), 981 – 992.
dc.identifier.citedreferenceRoederer, J. G. ( 1970 ). Dynamics of geomagnetically trapped radiation. New York: Springer‐Verlag.
dc.identifier.citedreferenceSheldon, R. B., Spence, H. E., & Fennell, J. F. ( 1998 ). Observation of the 40 keV field‐aligned ion beams. Geophysical research letters, 25 ( 10 ), 1617 – 1620.
dc.identifier.citedreferenceShi, R., Summers, D., Ni, B., Manweiler, J. W., Mitchell, D. G., & Lanzerotti, L. J. ( 2016 ). A statistical study of proton pitch angle distributions measured by the radiation belt storm probes ion composition experiment. Journal of Geophysical Research: Space Physics, 121, 5233 – 5249. https://doi.org/10.1002/2015JA022140
dc.identifier.citedreferenceSibeck, D. G., McEntire, R. W., Lui, A. T. Y., Lopez, R. E., & Krimigis, S. M. ( 1987 ). Magnetic field drift shell splitting: Cause of unusual dayside particle pitch angle distributions during storms and substorms. Journal of Geophysical Research: Space Physics, 92 ( A12 ), 13485 – 13497.
dc.identifier.citedreferenceSmith, P. H., & Hoffman, R. A. ( 1973 ). Ring current particle distributions during the magnetic storms of December 16‐18, 1971. J. Geophys. Res., 78 ( 2 ), 4731. https://doi.org/10.1029/JA078i022p04731
dc.identifier.citedreferenceSpence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., Chan, A. A., Claudepierre, S. G., Clemmons, J. H., Cravens, J. P., & Elkington, S. R. ( 2013 ). Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and thermal plasma (ECT) suite on NASA’s Van Allen probes mission. Space Science Reviews, 179, 311 – 336. https://doi.org/10.1007/s11214‐013‐0007‐5
dc.identifier.citedreferenceTakahashi, K., Anderson, B. J., Ohtani, S. I., Reeves, G. D., Takahashi, S., Sarris, T. E., & Mursula, K. ( 1997 ). Drift‐shell splitting of energetic ions injected at pseudo‐substorm onsets. Journal of Geophysical Research: Space Physics, 102 ( A10 ), 22117 – 22130.
dc.identifier.citedreferenceWilliams, D. J. ( 1985 ). Dynamic of the Earth’s ring current: Theory and observation. Space Science Reviews, 42 ( 3‐4 ), 375 – 396. https://doi.org/10.1007/bf00214994
dc.identifier.citedreferenceYau, A. W., Shelley, E. G., Peterson, W. K., & Lenchyshyn, L. ( 1985 ). Energetic auroral and polar ion outflow at DE 1 altitudes: Magnitude, composition, magnetic activity dependence, and long‐term variations. J. Geophys. Res., 90, 8417.
dc.identifier.citedreferenceYue, C., Bortnik, J., Chen, L., Ma, Q., Thorne, R. M., Reeves, G. D., & Spence, H. E. ( 2017 ). Transitional behavior of different energy protons based on Van Allen Probes observations. Geophysical Research Letters, 44. https://doi.org/10.1002/2016GL071324
dc.identifier.citedreferenceYue, C., Bortnik, J., Li, W., Ma, Q., Gkioulidou, M., Reeves, G. D., Wang, C. P., Thorne, R. M., Lui, A. T., Gerrard, A. J., & Spence, H. E. ( 2018 ). The composition of plasma inside geostationary orbit based on Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 123, 6478 – 6493. https://doi.org/10.1029/2018JA025344
dc.identifier.citedreferenceYue, C., Bortnik, J., Li, W., Ma, Q., Wang, C. P., Thorne, R. M., Lyons, L., Reeves, G. D., Spence, H. E., Gerrard, A. J., & Gkioulidou, M. ( 2019 ). Oxygen ion dynamics in the Earth’s ring current: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA026801
dc.identifier.citedreferenceYue, C., Bortnik, J., Thorne, R. M., Ma, Q., An, X., Chappell, C. R., Gerrard, A. J., Lanzerotti, L. J., Shi, Q., Reeves, G. D., & Spence, H. E. ( 2017 ). The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations. J. Geophys. Res. Space Physics, 122. https://doi.org/10.1002/2017JA024421
dc.identifier.citedreferenceChaston, C. C., Bonnell, J. W., Carlson, C. W., McFadden, J. P., Ergun, R. E., Strangeway, R. J., & Lund, E. J. ( 2004 ). Auroral ion acceleration in dispersive Alfve ́n waves. J. Geophys. Res., 109, A04205. https://doi.org/10.1029/2003JA010053
dc.identifier.citedreferenceChaston, C. C., Bonnell, J. W., Reeves, G. D., & Skoug, R. M. ( 2016 ). Driving ionospheric outflows and magnetospheric O + energy density with Alfvén waves. Geophys. Res. Lett., 43, 4825 – 4833. https://doi.org/10.1002/2016GL069008
dc.identifier.citedreferenceChaston, C. C., Bonnell, J. W., Wygant, J. R., Kletzing, C. A., Reeves, G. D., Gerrard, A., Lanzerotti, L., & Smith, C. W. ( 2015 ). Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm time inner magnetosphere. Geophys. Res. Lett., 42, 10,531 – 10,540. https://doi.org/10.1002/2015GL066674
dc.identifier.citedreferenceChaston, C. C., Carlson, C. W., McFadden, J. P., Ergun, R. E., & Strangeway, R. J. ( 2007 ). How important are dispersive Alfve ́n waves for auroral particle acceleration? Geophys. Res. Lett., 34, L07101. https://doi.org/10.1029/2006GL029144
dc.identifier.citedreferenceChaston, C. C., Peticolas, L. M., Carlson, C. W., McFadden, J. P., Mozer, F., Wilber, M., Parks, G. K., Hull, A., Ergun, R. E., Strangeway, R. J., & Andre, M. ( 2005 ). Energy deposition by Alfve ́n waves into the dayside auroral oval: Cluster and FAST observations. J. Geophys. Res., 110, A02211. https://doi.org/10.1029/2004JA010483
dc.identifier.citedreferenceChen, M. W., Roeder, J. L., Fennell, J. F., & Lyons, L. R. ( 1998 ). Simulations of ring current proton pitch angle distributions. J. Geophys. Res., 103, 165 – 178.
dc.identifier.citedreferenceChen, M. W., Roeder, J. L., Fennell, J. F., Lyons, L. R., Lambour, R. L., & Schulz, M. ( 1999 ). Proton ring current pitch angle distributions: Comparison of simulations with CRRES observations. J. Geophys. Res., 104 ( A8 ), 17,379 – 17,389. https://doi.org/10.1029/1999JA900142
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.