Show simple item record

On the Role of a Large Shallow Lake (Lake St. Clair, USA‐Canada) in Modulating Phosphorus Loads to Lake Erie

dc.contributor.authorBocaniov, Serghei A.
dc.contributor.authorVan Cappellen, Philippe
dc.contributor.authorScavia, Donald
dc.date.accessioned2020-02-05T15:08:07Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-02-05T15:08:07Z
dc.date.issued2019-12
dc.identifier.citationBocaniov, Serghei A.; Van Cappellen, Philippe; Scavia, Donald (2019). "On the Role of a Large Shallow Lake (Lake St. Clair, USA‐Canada) in Modulating Phosphorus Loads to Lake Erie." Water Resources Research 55(12): 10548-10564.
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/2027.42/153723
dc.description.abstractIt is often assumed that large shallow water bodies are net sediment nondepositional annually and that if they have nutrient loads from multiple sources, those loads are quickly homogenized before exiting the water bodies. Where this is not the case, it impacts understanding and predicting consequences of nutrient load reductions, both for the water body and for those downstream of it. We applied a three‐dimensional ecological model to a large shallow lake, Lake St. Clair (US/Canada), to quantify the total and dissolved reactive phosphorus (TP and DRP) transport and retention, and construct tributary‐specific relationships between phosphorus load to the lake and the amount of phosphorus that leaves the lake for the three major tributaries. Lake St. Clair is situated between the St. Clair and Detroit rivers, the latter enters Lake Erie. Efforts to reduce Lake Erie’s re‐eutrophication requires an understanding of nutrient transport and retention in each of its subwatersheds including those that feed indirectly via Lake St. Clair. We found that over the simulation period, the lake retained a significant portion of TP (17%) and DRP (35%) load and that TP and DRP retention was spatially variable and largely controlled by a combination of lake depth, resuspension, and plankton uptake. Compared to the Clinton and Sydenham rivers, the Thames River contributed a larger proportion of its load to the lake’s outflow. However, because the lake’s load is dominated by the St. Clair River, 40% reductions of nutrients from those subwatersheds will result in less than a 5% reduction in the load to Lake Erie.Key PointsA large shallow lake with a 9 day water retention time still retains 17% of its total phosphorus and 35% of its dissolved phosphorus inputsTributary loads are not well‐mixed within the lake, leading to spatial‐temporal differences in phosphorus retentionWhile wind‐induced resuspension drives interannual variability in phosphors retention, depths greater than 5 m are net depositional
dc.publisherPrentice Hall, Inc.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherLake St. Clair
dc.subject.otherTributary
dc.subject.otherResuspension
dc.subject.otherSettling
dc.subject.otherRetention
dc.subject.otherNutrients
dc.titleOn the Role of a Large Shallow Lake (Lake St. Clair, USA‐Canada) in Modulating Phosphorus Loads to Lake Erie
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153723/1/wrcr24289.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153723/2/wrcr24289_am.pdf
dc.identifier.doi10.1029/2019WR025019
dc.identifier.sourceWater Resources Research
dc.identifier.citedreferenceMuenich, R. L., Kalcic, M., & Scavia, D. ( 2016 ). Evaluating the impact of legacy P and agricultural conservation practices on nutrient loads from the Maumee River watershed. Environmental Science & Technology, 50 ( 15 ), 8146 – 8154. https://doi.org/10.1021/acs.est.6b01421
dc.identifier.citedreferenceKaratayev, A. Y., Burlakova, L. E., Mehler, K., Bocaniov, S. A., Collingsworth, P. D., Warren, G., Kraus, R. T., & Hinchey, E. K. ( 2018 ). Biomonitoring using invasive species in a large lake: Dreissena distribution maps hypoxic zones. Journal ofGreat Lakes Research, 44 ( 4 ), 639 – 649. https://doi.org/10.1016/j.jglr.2017.08.001
dc.identifier.citedreferenceKestin, J., Sokolov, M., & Wakeham, W. A. ( 1978 ). Viscosity of liquid water in the range −8 C to 150 C. Journal of Physical and Chemical Reference Data, 7 ( 3 ), 941 – 948. https://doi.org/10.1063/1.555581
dc.identifier.citedreferenceLang, G. A., Morton, J. A., & Fontaine, T. D. III ( 1988 ). Total phosphorus budget for Lake St. Clair: 1975–80. Journal of Great Lakes Research, 14 ( 3 ), 257 – 266. https://doi.org/10.1016/S0380‐1330(88)71556‐7
dc.identifier.citedreferenceLeon, L. F., Smith, R. E., Hipsey, M. R., Bocaniov, S. A., Higgins, S. N., Hecky, R. E., Antenucci, J. P., Imberger, J. A., & Guildford, S. J. ( 2011 ). Application of a 3D hydrodynamic‐biological model for seasonal and spatial dynamics of water quality and phytoplankton in Lake Erie. Journal of Great Lakes Research, 37 ( 1 ), 41 – 53. https://doi.org/10.1016/j.jglr.2010.12.007
dc.identifier.citedreferenceLiu, W., Bocaniov, S. A., Lamb, K. G., & Smith, R. E. ( 2014 ). Three dimensional modeling of the effects of changes in meteorological forcing on the thermal structure of Lake Erie. Journal of Great Lakes Research, 40 ( 4 ), 827 – 840. https://doi.org/10.1016/j.jglr.2014.08.002
dc.identifier.citedreferenceLudsin, S. A., Kershner, M. W., Blocksom, K. A., Knight, R. L., & Stein, R. A. ( 2001 ). Life after death in Lake Erie: Nutrient controls drive fish species richness, rehabilitation. Ecological Applications, 11 ( 3 ), 731 – 746. https://doi.org/10.1890/1051‐0761(2001)011[0731:LADILE]2.0.CO;2
dc.identifier.citedreferenceLuettich, R. A. Jr., Harleman, D. R., & Somlyody, L. ( 1990 ). Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography, 35 ( 5 ), 1050 – 1067. https://doi.org/10.4319/lo.1990.35.5.1050
dc.identifier.citedreferenceMaccoux, M. J., Dove, A., Backus, S. M., & Dolan, D. M. ( 2016 ). Total and soluble reactive phosphorus loadings to Lake Erie: A detailed accounting by year, basin, country, and tributary. Journal of Great Lakes Research, 42 ( 6 ), 1151 – 1165. https://doi.org/10.1016/j.jglr.2016.08.005
dc.identifier.citedreferenceMasselink, G., Hughes, M., & Knight, J. ( 2014 ). Introduction to coastal processes and geomorphology. Routledge.
dc.identifier.citedreferenceMichalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., Chaffin, J. D., Cho, K., Confesor, R., Daloğlu, I., & DePinto, J. V. ( 2013 ). Record‐setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences, 110 ( 16 ), 6448 – 6452. https://doi.org/10.1073/pnas.1216006110
dc.identifier.citedreferenceNalepa, T. F., Gardner, W. S., & Malczyk, J. M. ( 1991 ). Phosphorus cycling by mussels (Unionidae: Bivalvia) in Lake St. Clair. Hydrobiologia, 219 ( 1 ), 239 – 250. https://doi.org/10.1007/BF00024758
dc.identifier.citedreferenceNalepa, T. F., Hartson, D. J., Gostenik, G. W., Fanslow, D. L., & Lang, G. A. ( 1996 ). Changes in the freshwater mussel community of Lake St. Clair: from Unionidae to Dreissena polymorpha in eight years. Journal of Great Lakes Research, 22 ( 2 ), 354 – 369. https://doi.org/10.1016/S0380‐1330(96)70961‐9
dc.identifier.citedreferenceOveisy, A., Rao, Y. R., Leon, L. F., & Bocaniov, S. A. ( 2014 ). Three‐dimensional winter modeling and the effects of ice cover on hydrodynamics, thermal structure and water quality in Lake Erie. Journal of Great Lakes Research, 40, 19 – 28. https://doi.org/10.1016/j.jglr.2014.09.008
dc.identifier.citedreferenceScavia, D., Allan, J. D., Arend, K. K., Bartell, S., Beletsky, D., Bosch, N. S., Brandt, S. B., Briland, R. D., Daloğlu, I., DePinto, J. V., Dolan, D. M., Evans, M. A., Farmer, T. M., Goto, D., Han, H., Höök, T. O., Knight, R., Ludsin, S. A., Mason, D., Michalak, A. M., Richards, R. P., Roberts, J. J., Rucinski, D. K., Rutherford, E., Schwab, D. J., Sesterhenn, T., Zhang, H., & Zhou, Y. ( 2014 ). Assessing and addressing the re‐eutrophication of Lake Erie: Central basin hypoxia. Journal of Great Lakes Research, 40 ( 2 ), 226 – 246. https://doi.org/10.1016/j.jglr.2014.02.004
dc.identifier.citedreferenceScavia, D., Bocaniov, S. A., Dagnew, A., Long, C. M., & Wang, Y.‐C. ( 2019 ). St. Clair‐Detroit River system: Phosphorus mass balance and implications for Lake Erie load reduction, monitoring, and climate change. Journal of Great Lakes Research, 45 ( 1 ), 40 – 49. https://doi.org/10.1016/j.jglr.2018.11.008
dc.identifier.citedreferenceScavia, D., DePinto, J. V., & Bertani, I. ( 2016 ). A multi‐model approach to evaluating target phosphorus loads for Lake Erie. Journal of Great Lakes Research, 42 ( 6 ), 1139 – 1150. https://doi.org/10.1016/j.jglr.2016.09.007
dc.identifier.citedreferenceScavia, D., Kalcic, M., Muenich, R. L., Read, J., Aloysius, N., Bertani, I., Boles, C., Confesor, R., DePinto, J., Gildow, M., & Martin, J. ( 2017 ). Multiple models guide strategies for agricultural nutrient reductions. Frontiers in Ecology and the Environment, 15 ( 3 ), 126 – 132. https://doi.org/10.1002/fee.1472
dc.identifier.citedreferenceSchwab, D. J., Clites, A. H., Murthy, C. R., Sandall, J. E., Meadows, L. A., & Meadows, G. A. ( 1989 ). The effect of wind on transport and circulation in Lake St. Clair. Journal of Geophysical Research: Oceans, 94 ( C4 ), 4947 – 4958. https://doi.org/10.1029/JC094iC04p04947
dc.identifier.citedreferenceTanaka, M., Girard, G., Davis, R., Peuto, A., & Bignell, N. ( 2001 ). Recommended table for the density of water between 0 C and 40 C based on recent experimental reports. Metrologia, 38 ( 4 ), 301 – 309. https://doi.org/10.1088/0026‐1394/38/4/3
dc.identifier.citedreferenceTsai, C. H., & Lick, W. ( 1986 ). A portable device for measuring sediment resuspension. Journal of Great Lakes Research, 12 ( 4 ), 314 – 321. https://doi.org/10.1016/S0380‐1330(86)71731‐0
dc.identifier.citedreferenceU.S. Geological Survey ( 2018 ). U.S. Geological Survey National Water Information System: Web Interface (2018), https://waterdata.usgs.gov/nwis (accessed February 18, 2018).
dc.identifier.citedreferenceVan Rijn, L. C. ( 1993 ). Principles of sediment transport in rivers, estuaries and coastal seas, (Vol. 1006 ). Amsterdam: Aqua publications.
dc.identifier.citedreferenceZhou, Y., Michalak, A. M., Beletsky, D., Rao, Y. R., & Richards, R. P. ( 2015 ). Record‐breaking Lake Erie hypoxia during 2012 drought. Environmental Science & Technology, 49 ( 2 ), 800 – 807. https://doi.org/10.1021/es503981n
dc.identifier.citedreferenceAnderson, E. J., & Schwab, D. J. ( 2011 ). Relationships between wind‐driven and hydraulic flow in Lake St. Clair and the St. Clair River Delta. Journal of Great Lakes Research, 37 ( 1 ), 147 – 158. https://doi.org/10.1016/j.jglr.2010.11.007
dc.identifier.citedreferenceAnderson, E. J., Schwab, D. J., & Lang, G. A. ( 2010 ). Real‐time hydraulic and hydrodynamic model of the St. Clair River, Lake St. Clair, Detroit River system. Journal of Hydraulic Engineering, 136 ( 8 ), 507 – 518. https://doi.org/10.1061/(ASCE)HY.1943‐7900.0000203
dc.identifier.citedreferenceIJC (International Joint Commission) ( 2017 ). Draft domestic action plans for achieving phosphorus reductions in Lake Erie. Available at Canada‐United States collaboration for Great Lakes water quality website: https://binational.net/2017/03/10/dap‐pan/
dc.identifier.citedreferenceBocaniov, S. A., Leon, L. F., Rao, Y. R., Schwab, D. J., & Scavia, D. ( 2016 ). Simulating the effect of nutrient reduction on hypoxia in a large lake (Lake Erie, USA‐Canada) with a three‐dimensional lake model. Journal of Great Lakes Research, 42 ( 6 ), 1228 – 1240. https://doi.org/10.1016/j.jglr.2016.06.001
dc.identifier.citedreferenceBocaniov, S. A., & Scavia, D. ( 2016 ). Temporal and spatial dynamics of large lake hypoxia: Integrating statistical and three‐dimensional dynamic models to enhance lake management criteria. Water Resources Research, 52 ( 6 ), 4247 – 4263. https://doi.org/10.1002/2015WR018170
dc.identifier.citedreferenceBocaniov, S. A., & Scavia, D. ( 2018 ). Nutrient loss rates in relation to transport time scales in a large shallow lake (Lake St. Clair, USA–Canada): Insights from a three‐dimensional lake model. Water Resources Research, 54 ( 6 ), 3825 – 3840. https://doi.org/10.1029/2017WR021876
dc.identifier.citedreferenceBocaniov, S. A., Smith, R. E., Spillman, C. M., Hipsey, M. R., & Leon, L. F. ( 2014 ). The nearshore shunt and the decline of the phytoplankton spring bloom in the Laurentian Great Lakes: Insights from a three‐dimensional lake model. Hydrobiologia, 731 ( 1 ), 151 – 172. https://doi.org/10.1007/s10750‐013‐1642‐2
dc.identifier.citedreferenceBocaniov, S. A., Ullmann, C., Rinke, K., Lamb, K. G., & Boehrer, B. ( 2014 ). Internal waves and mixing in a stratified reservoir: Insights from three‐dimensional modeling. Limnologica ‐Ecology and Management of Inland Waters, 49, 52 – 67. https://doi.org/10.1016/j.limno.2014.08.004
dc.identifier.citedreferenceBridgeman, T. B., Chaffin, J. D., & Filbrun, J. E. ( 2013 ). A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011. Journal of Great Lakes Research, 39 ( 1 ), 83 – 89. https://doi.org/10.1016/j.jglr.2012.11.004
dc.identifier.citedreferenceBurniston, D., Dove, A., Backus, S., & Thompson, A. ( 2018 ). Nutrient concentrations and loadings in the St. Clair River–Detroit River Great Lakes interconnecting channel. Journal of Great Lakes Research, 44, 398 – 411.
dc.identifier.citedreferenceCharlton, M. N., Milne, J. E., Booth, W. G., & Chiocchio, F. ( 1993 ). Lake Erie offshore in 1990: Restoration and resilience in the central basin. Journal of Great Lakes Research, 19 ( 2 ), 291 – 309. https://doi.org/10.1016/S0380‐1330(93)71218‐6
dc.identifier.citedreferenceDagnew, A., Scavia, D., Wang, Y. C., Muenich, R., & Kalcic, M. ( 2019 ). Modeling phosphorus reduction strategies from the international St. Clair‐Detroit River system watershed. Journal of Great Lakes Research, 45 ( 4 ), 742 – 751. https://doi.org/10.1016/j.jglr.2019.04.005
dc.identifier.citedreferenceDean, R. G., & Dalrymple, R. A. ( 1984 ). Water wave mechanics for engineers and scientists. Englewood Cliffs, New Jersey: Prentice Hall, Inc. ISBN: 0‐13‐946038‐1.
dc.identifier.citedreferenceGlenn, S. M., & Grant, W. D. ( 1987 ). A suspended sediment stratification correction for combined wave and current flows. Journal of Geophysical Research: Oceans, 92 ( C8 ), 8244 – 8264. https://doi.org/10.1029/JC092iC08p08244
dc.identifier.citedreferenceGLWQA (Great Lakes Water Quality Agreement) ( 2016 ). The United States and Canada adopt phosphorus load reduction targets to combat Lake Erie algal blooms, https://tinyurl.com/y4y8nsm3 (assessed February 25, 201 8).
dc.identifier.citedreferenceGrant, W. D., & Madsen, O. S. ( 1979 ). Combined wave and current interaction with a rough bottom. Journal of Geophysical Research: Oceans, 84 ( C4 ), 1797 – 1808. https://doi.org/10.1029/JC084iC04p01797
dc.identifier.citedreferenceHamilton, D., & Mitchell, S. ( 1997 ). Wave‐induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater biology, 38 ( 1 ), 159 – 168. https://doi.org/10.1046/j.1365‐2427.1997.00202.x
dc.identifier.citedreferenceHamilton, D. P., & Mitchell, S. F. ( 1996 ). An empirical model for sediment resuspension in shallow lakes. Hydrobiologia, 317 ( 3 ), 209 – 220. https://doi.org/10.1007/BF00036471
dc.identifier.citedreferenceHawley, N., & Lesht, B. M. ( 1992 ). Sediment resuspension in Lake St. Clair. Limnology and oceanography, 37 ( 8 ), 1720 – 1737. https://doi.org/10.4319/lo.1992.37.8.1720
dc.identifier.citedreferenceHipsey, M. R. ( 2008 ). The CWR computational aquatic ecosystem dynamics model CAEDYM. User Manual. Centre for Water Research (CWR), The University of Western, Perth.
dc.identifier.citedreferenceHipsey, M. R., & Hamilton, D. P. ( 2008 ). Computational Aquatic Ecosystem Dynamics Model: CAEDYM v3. v3.3 Science Manual (DRAFT). Centre for Water Research (CWR), University of Western Australia.
dc.identifier.citedreferenceHo, J. C., & Michalak, A. M. ( 2015 ). Challenges in tracking harmful algal blooms: A synthesis of evidence from Lake Erie. Journal of Great Lakes Research, 41 ( 2 ), 317 – 325. https://doi.org/10.1016/j.jglr.2015.01.001
dc.identifier.citedreferenceHu, Y., Scavia, D., & Kerkez, B. ( 2018 ). Are all data useful? Inferring causality to predict flows across sewer and drainage systems using Directed Information and Boosted Regression Trees. Water Resources, 145, 697 – 706.
dc.identifier.citedreferenceHYDAT ( 2018 ). Canada’s HYDAT National Water Data Archive, http://tinyurl.com/y8be92pz (assessed February 1, 2018).
dc.identifier.citedreferenceIJC (International Joint Commission) ( 1978 ). Great Lakes Water Quality Agreement of 1978, with annexes and terms of reference, between the United States of America and Canada. IJC: Windsor, Ontario, Canada, November 22, 1978.
dc.identifier.citedreferenceIJC (International Joint Commission) ( 2012 ). Great Lakes Water Quality Agreement 2012. Protocol amending the agreement between Canada and the United States of America on Great Lakes water quality. IJC: Windsor, Ontario, Canada, September 7, 2012.
dc.identifier.citedreferenceKalcic, M. M., Kirchhoff, C., Bosch, N., Muenich, R. L., Murray, M., Griffith Gardner, J., & Scavia, D. ( 2016 ). Engaging stakeholders to define feasible and desirable agricultural conservation in western Lake Erie watersheds. Environmental Science & Technology, 50 ( 15 ), 8135 – 8145. https://doi.org/10.1021/acs.est.6b01420
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.