Show simple item record

Discordant and heterogeneous clinically relevant genomic alterations in circulating tumor cells vs plasma DNA from men with metastatic castration resistant prostate cancer

dc.contributor.authorGupta, Santosh
dc.contributor.authorHovelson, Daniel H.
dc.contributor.authorKemeny, Gabor
dc.contributor.authorHalabi, Susan
dc.contributor.authorFoo, Wen‐chi
dc.contributor.authorAnand, Monika
dc.contributor.authorSomarelli, Jason A.
dc.contributor.authorTomlins, Scott A.
dc.contributor.authorAntonarakis, Emmanuel S.
dc.contributor.authorLuo, Jun
dc.contributor.authorDittamore, Ryan V.
dc.contributor.authorGeorge, Daniel J.
dc.contributor.authorRothwell, Colin
dc.contributor.authorNanus, David M.
dc.contributor.authorArmstrong, Andrew J.
dc.contributor.authorGregory, Simon G.
dc.date.accessioned2020-02-05T15:08:52Z
dc.date.availableWITHHELD_15_MONTHS
dc.date.available2020-02-05T15:08:52Z
dc.date.issued2020-04
dc.identifier.citationGupta, Santosh; Hovelson, Daniel H.; Kemeny, Gabor; Halabi, Susan; Foo, Wen‐chi ; Anand, Monika; Somarelli, Jason A.; Tomlins, Scott A.; Antonarakis, Emmanuel S.; Luo, Jun; Dittamore, Ryan V.; George, Daniel J.; Rothwell, Colin; Nanus, David M.; Armstrong, Andrew J.; Gregory, Simon G. (2020). "Discordant and heterogeneous clinically relevant genomic alterations in circulating tumor cells vs plasma DNA from men with metastatic castration resistant prostate cancer." Genes, Chromosomes and Cancer 59(4): 225-239.
dc.identifier.issn1045-2257
dc.identifier.issn1098-2264
dc.identifier.urihttps://hdl.handle.net/2027.42/153751
dc.description.abstractCirculating tumor cell (CTC) and cellâ free (cf) DNAâ based genomic alterations are increasingly being used for clinical decisionâ making in oncology. However, the concordance and discordance between paired CTC and cfDNA genomic profiles remain largely unknown. We performed comparative genomic hybridization (CGH) on CTCs and cfDNA, and lowâ pass whole genome sequencing (lpWGS) on cfDNA to characterize genomic alterations (CNA) and tumor content in two independent prospective studies of 93 men with mCRPC treated with enzalutamide/abiraterone, or radiumâ 223. Comprehensive analysis of 69 patient CTCs and 72 cfDNA samples from 93 men with mCRPC, including 64 paired samples, identified common concordant gains in FOXA1, AR, and MYC, and losses in BRCA1, PTEN, and RB1 between CTCs and cfDNA. Concordant PTEN loss and discordant BRCA2 gain were associated with significantly worse outcomes in Epic ARâ V7 negative men with mCRPC treated with abiraterone/enzalutamide. We identified and externally validated CTCâ specific genomic alternations that were discordant in paired cfDNA, even in samples with high tumor content. These CTC/cfDNAâ discordant regions included key genomic regulators of lineage plasticity, osteomimicry, and cellular differentiation, including MYCN gain in CTCs (31%) that was rarely detected in cfDNA. CTC MYCN gain was associated with poor clinical outcomes in ARâ V7 negative men and small cell transformation. In conclusion, we demonstrated concordance of multiple genomic alterations across CTC and cfDNA platforms; however, some genomic alterations displayed substantial discordance between CTC DNA and cfDNA despite the use of identical copy number analysis methods, suggesting tumor heterogeneity and divergent evolution associated with poor clinical outcomes.
dc.publisherJohn Wiley & Sons, Inc.
dc.titleDiscordant and heterogeneous clinically relevant genomic alterations in circulating tumor cells vs plasma DNA from men with metastatic castration resistant prostate cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153751/1/gcc22824.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153751/2/gcc22824_am.pdf
dc.identifier.doi10.1002/gcc.22824
dc.identifier.sourceGenes, Chromosomes and Cancer
dc.identifier.citedreferenceArmstrong AJ, Gupta S, Healy P, et al. Pharmacodynamic study of radiumâ 223 in men with bone metastatic castration resistant prostate cancer. PLoS One. 2019; 14 ( 5 ):e 0216934. https://doi.org/10.1371/journal.pone.0216934.
dc.identifier.citedreferenceArmstrong AJ, Halabi S, Luo J, et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in highâ risk castrationâ resistant prostate cancer: The PROPHECY study. J Clin Oncol. 2019; 37 ( 13 ): 1120 â 1129. https://doi.org/10.1200/JCO.18.01731.
dc.identifier.citedreferenceDe Laere B, Oeyen S, Mayrhofer M, et al. TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castrationâ resistant prostate cancer. Clin Cancer Res. 2019; 25 ( 6 ): 1766 â 1773. https://doi.org/10.1158/1078-0432.CCR-18-1943.
dc.identifier.citedreferenceArmstrong AJ, Eisenberger MA, Halabi S, et al. Biomarkers in the management and treatment of men with metastatic castrationâ resistant prostate cancer. Eur Urol. 2012; 61 ( 3 ): 549 â 559. https://doi.org/10.1016/j.eururo.2011.11.009.
dc.identifier.citedreferenceTaylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010; 18 ( 1 ): 11 â 22. https://doi.org/10.1016/j.ccr.2010.05.026.
dc.identifier.citedreferenceTerada N, Akamatsu S, Kobayashi T, Inoue T, Ogawa O, Antonarakis ES. Prognostic and predictive biomarkers in prostate cancer: latest evidence and clinical implications. Ther Adv Med Oncol. 2017; 9 ( 8 ): 565 â 573. https://doi.org/10.1177/1758834017719215.
dc.identifier.citedreferenceHodara E, Morrison G, Cunha A, et al. Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight. 2019; 4 ( 5 ). https://doi.org/10.1172/jci.insight.125529.
dc.identifier.citedreferenceHong CS, Singh LN, Mullikin JC, Biesecker LG. Assessing the reproducibility of exome copy number variations predictions. Genome Med. 2016; 8 ( 1 ): 82. https://doi.org/10.1186/s13073-016-0336-6.
dc.identifier.citedreferenceProvencio M, Perezâ Callejo D, Torrente M, et al. Concordance between circulating tumor cells and clinical status during followâ up in anaplastic lymphoma kinase (ALK) nonâ smallâ cell lung cancer patients. Oncotarget. 2017; 8 ( 35 ): 59408 â 59416. https://doi.org/10.18632/oncotarget.19722.
dc.identifier.citedreferenceRomanel A, Gasi Tandefelt D, Conteduca V, et al. Plasma AR and abirateroneâ resistant prostate cancer. Sci Transl Med. 2015; 7 ( 312 ): 312re10. https://doi.org/10.1126/scitranslmed.aac9511.
dc.identifier.citedreferenceUlz P, Belic J, Graf R, et al. Wholeâ genome plasma sequencing reveals focal amplifications as a driving force in metastatic prostate cancer. Nat Commun. 2016; 7: 12008. https://doi.org/10.1038/ncomms12008.
dc.identifier.citedreferenceMassard C, Oulhen M, Le Moulec S, et al. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castrationâ resistant prostate cancer: a report from the PETRUS prospective study. Oncotarget. 2016; 7 ( 34 ): 55069 â 55082. https://doi.org/10.18632/oncotarget.10396.
dc.identifier.citedreferenceScher HI, Halabi S, Tannock I, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the prostate cancer clinical trials working group. J Clin Oncol. 2008; 26 ( 7 ): 1148 â 1159. https://doi.org/10.1200/JCO.2007.12.4487.
dc.identifier.citedreferenceGupta S, Li J, Kemeny G, et al. Whole genomic copy number alterations in circulating tumor cells from men with Abiraterone or enzalutamideâ resistant metastatic castrationâ resistant prostate cancer. Clin Cancer Res. 2017; 23 ( 5 ): 1346 â 1357. https://doi.org/10.1158/1078-0432.CCR-16-1211.
dc.identifier.citedreferenceScher HI, Graf RP, Schreiber NA, et al. Nuclearâ specific ARâ V7 protein localization is necessary to guide treatment selection in metastatic castrationâ resistant prostate cancer. Eur Urol. 2017; 71 ( 6 ): 874 â 882. https://doi.org/10.1016/j.eururo.2016.11.024.
dc.identifier.citedreferenceGao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6 ( 269 ): pl1. https://doi.org/10.1126/scisignal.2004088.
dc.identifier.citedreferenceHovelson DH, Liu CJ, Wang Y, et al. Rapid, ultra low coverage copy number profiling of cellâ free DNA as a precision oncology screening strategy. Oncotarget. 2017; 8 ( 52 ): 89848 â 89866. https://doi.org/10.18632/oncotarget.21163.
dc.identifier.citedreferenceRobinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161 ( 5 ): 1215 â 1228. https://doi.org/10.1016/j.cell.2015.05.001.
dc.identifier.citedreferenceScher HI, Graf RP, Schreiber NA, et al. Phenotypic heterogeneity of circulating tumor cells informs clinical decisions between AR Signaling inhibitors and Taxanes in metastatic prostate cancer. Cancer Res. 2017; 77 ( 20 ): 5687 â 5698. https://doi.org/10.1158/0008-5472.CAN-17-1353.
dc.identifier.citedreferenceBeltran H, Jendrisak A, Landers M, et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin Cancer Res. 2016; 22 ( 6 ): 1510 â 1519. https://doi.org/10.1158/1078-0432.CCR-15-0137.
dc.identifier.citedreferenceKoeneman KS, Yeung F, Chung LW. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate. 1999; 39 ( 4 ): 246 â 261.
dc.identifier.citedreferenceKumar A, Coleman I, Morrissey C, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016; 22 ( 4 ): 369 â 378. https://doi.org/10.1038/nm.4053.
dc.identifier.citedreferenceHong MK, Macintyre G, Wedge DC, et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat Commun. 2015; 6: 6605. https://doi.org/10.1038/ncomms7605.
dc.identifier.citedreferenceTorquato S, Pallavajjala A, Goldstein A, et al. Genetic alterations detected in cellâ free DNA are associated with enzalutamide and Abiraterone resistance in castrationâ resistant prostate cancer. JCO Precis Oncol. 2019; 3: 1 â 14. https://doi.org/10.1200/po.18.00227.
dc.identifier.citedreferenceMosquera JM, Beltran H, Park K, et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatmentâ related neuroendocrine prostate cancer. Neoplasia. 2013; 15 ( 1 ): 1 â 10.
dc.identifier.citedreferenceBeltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011; 1 ( 6 ): 487 â 495. https://doi.org/10.1158/2159-8290.CD-11-0130.
dc.identifier.citedreferenceBeltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castrationâ resistant neuroendocrine prostate cancer. Nat Med. 2016; 22 ( 3 ): 298 â 305. https://doi.org/10.1038/nm.4045.
dc.identifier.citedreferenceIlie M, Hofman V, Long E, et al. Current challenges for detection of circulating tumor cells and cellâ free circulating nucleic acids, and their characterization in nonâ small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med. 2014; 2 ( 11 ):107. https://doi.org/10.3978/j.issn.2305-5839.2014.08.11.
dc.identifier.citedreferenceChemi F, Rothwell DG, McGranahan N, et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat Med. 2019; 25: 1534 â 1539. https://doi.org/10.1038/s41591-019-0593-1.
dc.identifier.citedreferencede Bono JS, Attard G, Adjei A, et al. Potential applications for circulating tumor cells expressing the insulinâ like growth factorâ I receptor. Clin Cancer Res. 2007; 13 ( 12 ): 3611 â 3616. https://doi.org/10.1158/1078-0432.CCR-07-0268.
dc.identifier.citedreferenceScher HI, Heller G, Molina A, et al. Circulating tumor cell biomarker panel as an individualâ level surrogate for survival in metastatic castrationâ resistant prostate cancer. J Clin Oncol. 2015; 33 ( 12 ): 1348 â 1355. https://doi.org/10.1200/JCO.2014.55.3487.
dc.identifier.citedreferenceQuigley D, Alumkal JJ, Wyatt AW, et al. Analysis of circulating cellâ free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov. 2017; 7 ( 9 ): 999 â 1005. https://doi.org/10.1158/2159-8290.CD-17-0146.
dc.identifier.citedreferenceAshworth T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Med J Aust. 1869; 14: 146 â 149.
dc.identifier.citedreferenceCristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004; 351 ( 8 ): 781 â 791. https://doi.org/10.1056/NEJMoa040766.
dc.identifier.citedreferenceParkinson DR, Dracopoli N, Petty BG, et al. Considerations in the development of circulating tumor cell technology for clinical use. J Transl Med. 2012; 10: 138. https://doi.org/10.1186/1479-5876-10-138.
dc.identifier.citedreferenceSiravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017; 14 ( 9 ): 531 â 548. https://doi.org/10.1038/nrclinonc.2017.14.
dc.identifier.citedreferenceZhang T, Armstrong AJ. Clinical utility of circulating tumor cells in advanced prostate cancer. Curr Oncol Rep. 2016; 18 ( 1 ): 3. https://doi.org/10.1007/s11912-015-0490-9.
dc.identifier.citedreferencede Bono JS, Scher HI, Montgomery RB, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castrationâ resistant prostate cancer. Clin Cancer Res. 2008; 14 ( 19 ): 6302 â 6309. https://doi.org/10.1158/1078-0432.CCR-08-0872.
dc.identifier.citedreferenceSchwarzenbach H, Hoon DS, Pantel K. Cellâ free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011; 11 ( 6 ): 426 â 437. https://doi.org/10.1038/nrc3066.
dc.identifier.citedreferenceWyatt AW, Azad AA, Volik SV, et al. Genomic alterations in cellâ free DNA and enzalutamide resistance in castrationâ resistant prostate cancer. JAMA Oncol. 2016; 2 ( 12 ): 1598 â 1606. https://doi.org/10.1001/jamaoncol.2016.0494.
dc.identifier.citedreferenceTorga G, Pienta KJ. Patientâ paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol. 2018; 4 ( 6 ): 868 â 870. https://doi.org/10.1001/jamaoncol.2017.4027.
dc.identifier.citedreferenceGoodall J, Mateo J, Yuan W, et al. Circulating cellâ free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 2017; 7 ( 9 ): 1006 â 1017. https://doi.org/10.1158/2159-8290.CD-17-0261.
dc.identifier.citedreferenceLambros MB, Seed G, Sumanasuriya S, et al. Singleâ cell analyses of prostate cancer liquid biopsies acquired by apheresis. Clin Cancer Res. 2018; 24: 5635 â 5644. https://doi.org/10.1158/1078-0432.CCR-18-0862.
dc.identifier.citedreferenceWyatt AW, Annala M, Aggarwal R, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J Natl Cancer Inst. 2017; 109 ( 12 ): 78 â 86. https://doi.org/10.1093/jnci/djx118.
dc.identifier.citedreferenceScher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012; 367 ( 13 ): 1187 â 1197. https://doi.org/10.1056/NEJMoa1207506.
dc.identifier.citedreferencede Bono JS, Chowdhury S, Feyerabend S, et al. Antitumour activity and safety of enzalutamide in patients with metastatic castrationâ resistant prostate cancer previously treated with abiraterone acetate plus prednisone for >/=24â weeks in Europe. Eur Urol. 2018; 74 ( 1 ): 37 â 45. https://doi.org/10.1016/j.eururo.2017.07.035.
dc.identifier.citedreferenceAntonarakis ES, Lu C, Wang H, et al. ARâ V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014; 371 ( 11 ): 1028 â 1038. https://doi.org/10.1056/NEJMoa1315815.
dc.identifier.citedreferenceScher HI, Lu D, Schreiber NA, et al. Association of ARâ V7 on circulating tumor cells as a treatmentâ specific biomarker with outcomes and survival in castrationâ resistant prostate cancer. JAMA Oncol. 2016; 2 ( 11 ): 1441 â 1449. https://doi.org/10.1001/jamaoncol.2016.1828.
dc.identifier.citedreferenceScher HI, Graf RP, Schreiber NA, et al. Assessment of the validity of nuclearâ localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castrationâ resistant prostate cancer. JAMA Oncol. 2018; 4 ( 9 ): 1179 â 1186. https://doi.org/10.1001/jamaoncol.2018.1621.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.