Show simple item record

Nitrogen Oxide Emissions from U.S. Oil and Gas Production: Recent Trends and Source Attribution

dc.contributor.authorDix, Barbara
dc.contributor.authorBruin, Joep
dc.contributor.authorRoosenbrand, Esther
dc.contributor.authorVlemmix, Tim
dc.contributor.authorFrancoeur, Colby
dc.contributor.authorGorchov‐negron, Alan
dc.contributor.authorMcDonald, Brian
dc.contributor.authorZhizhin, Mikhail
dc.contributor.authorElvidge, Christopher
dc.contributor.authorVeefkind, Pepijn
dc.contributor.authorLevelt, Pieternel
dc.contributor.authorGouw, Joost
dc.date.accessioned2020-02-05T15:09:04Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-02-05T15:09:04Z
dc.date.issued2020-01-16
dc.identifier.citationDix, Barbara; Bruin, Joep; Roosenbrand, Esther; Vlemmix, Tim; Francoeur, Colby; Gorchov‐negron, Alan ; McDonald, Brian; Zhizhin, Mikhail; Elvidge, Christopher; Veefkind, Pepijn; Levelt, Pieternel; Gouw, Joost (2020). "Nitrogen Oxide Emissions from U.S. Oil and Gas Production: Recent Trends and Source Attribution." Geophysical Research Letters 47(1): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/153757
dc.description.abstractU.S. oil and natural gas production volumes have grown by up to 100% in key production areas between January 2017 and August 2019. Here we show that recent trends are visible from space and can be attributed to drilling, production, and gas flaring activities. By using oil and gas activity data as predictors in a multivariate regression to satellite measurements of tropospheric NO2 columns, observed changes in NO2 over time could be attributed to NOx emissions associated with drilling, production and gas flaring for three select regions: the Permian, Bakken, and Eagle Ford basins. We find that drilling had been the dominant NOx source contributing around 80% before the downturn in drilling activity in 2015. Thereafter, NOx contributions from drilling activities and combined production and flaring activities are similar. Comparison of our topâ down source attribution with a bottomâ up fuelâ based oil and gas NOx emission inventory shows agreement within error margins.Plain Language SummaryU.S. oil and natural gas production volumes have grown by up to 100% in key production areas between January 2017 and August 2019. Here we show that recent trends are visible from space as increases in NO2, an air pollutant that is released from combustion engines associated with the oil and gas industry. For three select regions, the Permian (TX and NM), Bakken (ND), and Eagle Ford (TX) basins, we report that the trend in NO2 columns over time can be explained by a combination of drilling activity, production numbers, and flared gas volume, which allows us to quantify the contributions from these sources to the total NOx (= NO + NO2) emissions from these areas. We find that drilling had been the dominant NOx source contributing around 80% before the downturn in drilling activity in 2015. But now, NOx contributions from drilling activities and combined production and flaring activities are similar. Both Permian and Bakken oil and gas production volumes are at an allâ time high and if current growth rates continue in the Eagle Ford basin, maximum production volumes will be exceeded in about 1 year.Key PointsRecent increases in U.S. oil and gas production are seen from space as increased tropospheric NO2 columns and increased gas flaringChanges in NO2 over time can be attributed to oil and gas NOx emissions associated with drilling, production, and gas flaring activitiesTopâ down and bottomâ up source attributions agree that drilling and, to a lesser extent, production are the main sources of NOx emissions
dc.publisherWiley Periodicals, Inc.
dc.subject.otherNO2 VCDs
dc.subject.otherTROPOMI
dc.subject.otherOMI
dc.subject.otheroil and gas
dc.subject.otherNOx emissions
dc.subject.othersource attribution
dc.titleNitrogen Oxide Emissions from U.S. Oil and Gas Production: Recent Trends and Source Attribution
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153757/1/grl60007_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153757/2/grl60007.pdf
dc.identifier.doi10.1029/2019GL085866
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferencePétron, G., Frost, G., Miller, B. R., Hirsch, A. I., Montzka, S. A., Karion, A., Trainer, M., Sweeney, C., Andrews, A. E., Miller, L., Kofler, J., Barâ Ilan, A., Dlugokencky, E. J., Patrick, L., Moore, C. T., Jr, Ryerson, T. B., Siso, C., Kolodzey, W., Lang, P. M., Conway, T., Novelli, P., Masarie, K., Hall, B., Guenther, D., Kitzis, D., Miller, J., Welsh, D., Wolfe, D., Neff, W., & Tans, P. ( 2012 ). Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. Journal of Geophysical Research, 117, D04304. https://doi.org/10.1029/2011JD016360
dc.identifier.citedreferenceCarlton, A. G., Little, E., Moeller, M., Odoyo, S., & Shepson, P. B. ( 2014 ). The data gap: Can a lack of monitors obscure loss of clean air act benefits in fracking areas? Environmental Science & Technology, 48 ( 2 ), 893 â 894. https://doi.org/10.1021/es405672t
dc.identifier.citedreferencede Gouw, J. A., Parrish, D. D., Frost, G. J., & Trainer, M. ( 2014 ). Reduced emissions of CO 2, NO x, and SO 2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Future, 2 ( 2 ), 75 â 82. https://doi.org/10.1002/2013EF000196
dc.identifier.citedreferenceDuncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., Hurwitz, M. M., & Pickering, K. E. ( 2016 ). A spaceâ based, highâ resolution view of notable changes in urban NO x pollution around the world (2005â 2014). Journal of Geophysical Research: Atmospheres, 121, 976 â 996. https://doi.org/10.1002/2015JD024121
dc.identifier.citedreferenceEdwards, P. M., Brown, S. S., Roberts, J. M., Ahmadov, R., Banta, R. M., deGouw, J. A., Dubé, W. P., Field, R. A., Flynn, J. H., Gilman, J. B., Graus, M., Helmig, D., Koss, A., Langford, A. O., Lefer, B. L., Lerner, B. M., Li, R., Li, S. M., McKeen, S. A., Murphy, S. M., Parrish, D. D., Senff, C. J., Soltis, J., Stutz, J., Sweeney, C., Thompson, C. R., Trainer, M. K., Tsai, C., Veres, P. R., Washenfelder, R. A., Warneke, C., Wild, R. J., Young, C. J., Yuan, B., & Zamora, R. ( 2014 ). High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 514 ( 7522 ), 351 â 354. https://doi.org/10.1038/nature13767
dc.identifier.citedreferenceElvidge, C., Zhizhin, M., Baugh, K., Hsu, F.â C., & Ghosh, T. ( 2015 ). Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data. Energies, 9 ( 1 ), 14. https://doi.org/10.3390/en9010014
dc.identifier.citedreferenceGorchov Negron, A. M., McDonald, B. C., McKeen, S. A., Peischl, J., Ahmadov, R., de Gouw, J. A., Frost, G. J., Hastings, M. G., Pollack, I. B., Ryerson, T. B., Thompson, C., Warneke, C., & Trainer, M. ( 2018 ). Development of a fuelâ based oil and gas inventory of nitrogen oxides emissions. Environmental Science & Technology, 52 ( 17 ), 10,175 â 10,185. https://doi.org/10.1021/acs.est.8b02245
dc.identifier.citedreferenceHe, L., Zeng, Z. C., Pongetti, T. J., Wong, C., Liang, J., Gurney, K. R., Newman, S., Yadav, V., Verhulst, K., Miller, C. E., Duren, R., Frankenberg, C., Wennberg, P. O., Shia, R. L., Yung, Y. L., & Sander, S. P. ( 2019 ). Atmospheric methane emissions correlate with natural gas consumption from residential and commercial sectors in Los Angeles. Geophysical Research Letters, 46, 8563 â 8571. https://doi.org/10.1029/2019GL083400
dc.identifier.citedreferenceKarion, A., Sweeney, C., Pétron, G., Frost, G., Michael Hardesty, R., Kofler, J., Miller, B. R., Newberger, T., Wolter, S., Banta, R., Brewer, A., Dlugokencky, E., Lang, P., Montzka, S. A., Schnell, R., Tans, P., Trainer, M., Zamora, R., & Conley, S. ( 2013 ). Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophysical Research Letters, 40, 4393 â 4397. https://doi.org/10.1002/grl.50811
dc.identifier.citedreferenceKemballâ Cook, S., Barâ Ilan, A., Grant, J., Parker, L., Jung, J., Santamaria, W., Mathews, J., & Yarwood, G. ( 2010 ). Ozone impacts of natural gas development in the Haynesville Shale. Environmental Science & Technology, 44 ( 24 ), 9357 â 9363. https://doi.org/10.1021/es1021137
dc.identifier.citedreferenceKort, E. A., Frankenberg, C., Costigan, K. R., Lindenmaier, R., Dubey, M. K., & Wunch, D. ( 2014 ). Four corners: The largest U.S. methane anomaly viewed from space. Geophysical Research Letters, 41, 6898 â 6903. https://doi.org/10.1002/2014GL061503
dc.identifier.citedreferenceLaughner, J. L., & Cohen, R. C. ( 2017 ). Quantification of the effect of modeled lightning NO 2 on UVâ visible air mass factors. Atmospheric Measurement Techniques, 10 ( 11 ), 4403 â 4419. https://doi.org/10.5194/amtâ 10â 4403â 2017
dc.identifier.citedreferenceLevelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., Duncan, B. N., Streets, D. G., Eskes, H., van der A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, K., Apituley, A., González Abad, G., Arola, A., Boersma, F., Chan Miller, C., Chance, K., de Graaf, M., Hakkarainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, N., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L. G., Torres, O., Wang, H., & Wargan, K. ( 2018 ). The Ozone Monitoring Instrument: Overview of 14 years in space. Atmospheric Chemistry and Physics, 18 ( 8 ), 5699 â 5745. https://doi.org/10.5194/acpâ 18â 5699â 2018
dc.identifier.citedreferenceLi, R., Warneke, C., Graus, M., Field, R., Geiger, F., Veres, P. R., Soltis, J., Li, S.â M., Murphy, S. M., Sweeney, C., Pétron, G., Roberts, J. M., & de Gouw, J. ( 2014 ). Measurements of hydrogen sulfide (H2S) using PTRâ MS: calibration, humidity dependence, interâ comparison and results from field studies in an oil and gas production region. Atmospheric Measurement Techniques, 7 ( 10 ), 3597 â 3610. https://doi.org/10.5194/amtâ 7â 3597â 2014
dc.identifier.citedreferenceLin, J.â T., McElroy, M. B., & Boersma, K. F. ( 2010 ). Constraint of anthropogenic NO x emissions in China from different sectors: A new methodology using multiple satellite retrievals. Atmospheric Chemistry and Physics, 10 ( 1 ), 63 â 78. https://doi.org/10.5194/acpâ 10â 63â 2010
dc.identifier.citedreferenceLiu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., & Wagner, T. ( 2016 ). NO x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics, 16 ( 8 ), 5283 â 5298. https://doi.org/10.5194/acpâ 16â 5283â 2016
dc.identifier.citedreferenceMajid, A., Val Martin, M., Lamsal, L. N., & Duncan, B. N. ( 2017 ). A decade of changes in nitrogen oxides over regions of oil and natural gas activity in the United States. Elementa: Science of the Anthropocene, 5, 76. https://doi.org/10.1525/elementa.259
dc.identifier.citedreferenceMcDonald, B. C., Dallmann, T. R., Martin, E. W., & Harley, R. A. ( 2012 ). Longâ term trends in nitrogen oxide emissions from motor vehicles at national, state, and air basin scales. Journal of Geophysical Research, 117, D00V18. https://doi.org/10.1029/2012JD018304
dc.identifier.citedreferenceNault, B. A., Laughner, J. L., Wooldridge, P. J., Crounse, J. D., Dibb, J., Diskin, G., Peischl, J., Podolske, J. R., Pollack, I. B., Ryerson, T. B., Scheuer, E., Wennberg, P. O., & Cohen, R. C. ( 2017 ). Lightning NO x emissions: Reconciling measured and modeled estimates with updated NO x chemistry. Geophysical Research Letters, 44, 9479 â 9488. https://doi.org/10.1002/2017GL074436
dc.identifier.citedreferenceRussell, A. R., Valin, L. C., & Cohen, R. C. ( 2012 ). Trends in OMI NO 2 observations over the United States: Effects of emission control technology and the economic recession. Atmospheric Chemistry and Physics, 12 ( 24 ), 12,197 â 12,209. https://doi.org/10.5194/acpâ 12â 12197â 2012
dc.identifier.citedreferenceSchenkeveld, V. M. E., Jaross, G., Marchenko, S., Haffner, D., Kleipool, Q. L., Rozemeijer, N. C., Veefkind, J. P., & Levelt, P. F. ( 2017 ). Inâ flight performance of the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 10 ( 5 ), 1957 â 1986. https://doi.org/10.5194/amtâ 10â 1957â 2017
dc.identifier.citedreferenceTong, D. Q., Lamsal, L., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T., Pickering, K. E., & Stajner, I. ( 2015 ). Longâ term NO x trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories. Atmospheric Environment, 107, 70 â 84. https://doi.org/10.1016/j.atmosenv.2015.01.035
dc.identifier.citedreferenceTorres, V. M., Herndon, S., Wood, E., Alâ Fadhli, F. M., & Allen, D. T. ( 2012 ). Emissions of nitrogen oxides from flares operating at low flow conditions. Industrial & Engineering Chemistry Research, 51 ( 39 ), 12,600 â 12,605. https://doi.org/10.1021/ie300179x
dc.identifier.citedreferenceU.S. Energy Information Administration ( 2019a ). Drilling productivity report. Retrieved from www.eia.gov/petroleum/drilling/
dc.identifier.citedreferenceU.S. Energy Information Administration ( 2019b ). Petroleum and other liquids. Spot prices. Retrieved from www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
dc.identifier.citedreferenceU.S. Energy Information Administration ( 2019c ). Natural gas, natural gas prices. Retrieved from/ www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm
dc.identifier.citedreferenceU.S. Energy Information Administration ( 2019d ). Natural gas, heat content of natural gas consumed. Retrieved from www.eia.gov/dnav/ng/ng_cons_heat_a_EPG0_VGTH_btucf_a.htm
dc.identifier.citedreferenceU.S. Environmental Protection Agency ( 2015 ). EPA nonpoint oil and gas emission estimation tool for the 2014 NEI.
dc.identifier.citedreferencevan der A, R. J., Eskes, H. J., Boersma, K. F., van Noije, T. P. C., van Roozendael, M., de Smedt, I., Peters, D. H. M. U., & Meijer, E. W. ( 2008 ). Trends, seasonal variability and dominant NO x source derived from a ten year record of NO 2 measured from space. Journal of Geophysical Research, 113, D04302. https://doi.org/10.1029/2007JD009021
dc.identifier.citedreferenceVan Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., Maasakkers, J. D., & Veefkind, J. P. ( 2019 ). TROPOMI ATBD of the total and tropospheric NO 2. Data Products.
dc.identifier.citedreferenceVeefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., & Levelt, P. F. ( 2012 ). TROPOMI on the ESA Sentinelâ 5 precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120, 70 â 83. https://doi.org/10.1016/j.rse.2011.09.027
dc.identifier.citedreferenceWorld Health Organization ( 2005 ). Air quality guidelines, global update 2005: Particulate matter, ozone, nitrogen dioxide and sulfur dioxide.
dc.identifier.citedreferenceDuncan, B. N., Yoshida, Y., de Foy, B., Lamsal, L. N., Streets, D. G., Lu, Z., Pickering, K. E., & Krotkov, N. A. ( 2013 ). The observed response of Ozone Monitoring Instrument (OMI) NO 2 columns to NO x emission controls on power plants in the United States: 2005â 2011. Atmospheric Environment, 81, 102 â 111. https://doi.org/10.1016/j.atmosenv.2013.08.068
dc.identifier.citedreferenceAhmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., Edwards, P. M., de Gouw, J. A., Frost, G. J., Gilman, J., Helmig, D., Johnson, B., Karion, A., Koss, A., Langford, A., Lerner, B., Olson, J., Oltmans, S., Peischl, J., Pétron, G., Pichugina, Y., Roberts, J. M., Ryerson, T., Schnell, R., Senff, C., Sweeney, C., Thompson, C., Veres, P. R., Warneke, C., Wild, R., Williams, E. J., Yuan, B., & Zamora, R. ( 2015 ). Understanding high wintertime ozone pollution events in an oilâ and natural gasâ producing region of the western US. Atmospheric Chemistry and Physics, 15 ( 1 ), 411 â 429. https://doi.org/10.5194/acpâ 15â 411â 2015
dc.identifier.citedreferenceAlvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L., & Hamburg, S. P. ( 2012 ). Greater focus needed on methane leakage from natural gas infrastructure. Proceedings of the National Academy of Sciences, 109 ( 17 ), 6435 â 6440. https://doi.org/10.1073/pnas.1202407109
dc.identifier.citedreferenceAlvarez, R. A., Zavalaâ Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsendâ Small, A., Wofsy, S. C., & Hamburg, S. P. ( 2018 ). Assessment of methane emissions from the U.S. oil and gas supply chain. Science, 361 ( 6398 ), 186 â 188. https://doi.org/10.1126/science.aar7204
dc.identifier.citedreferenceBeirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., & Wagner, T. ( 2011 ). Megacity emissions and lifetimes of mitrogen oxides probed from space. Science, 333 ( 6050 ), 1737 â 1739. https://doi.org/10.1126/science.1207824
dc.identifier.citedreferenceBoersma, K. F., Eskes, H. J., Richter, A., de Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E., van Roozendael, M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., de Rudder, A., Irie, H., Pinardi, G., Lambert, J. C., & Compernolle, S. C. ( 2018 ). Improving algorithms and uncertainty estimates for satellite NO 2 retrievals: Results from the quality assurance for the essential climate variables (QA4ECV) project. Atmospheric Measurement Techniques, 11 ( 12 ), 6651 â 6678. https://doi.org/10.5194/amtâ 11â 6651â 2018
dc.identifier.citedreferenceBrandt, A. R., Heath, G. A., Kort, E. A., O’Sullivan, F., Petron, G., Jordaan, S. M., Tans, P., Wilcox, J., Gopstein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R., Stucky, G. D., Eardley, D., & Harriss, R. ( 2014 ). Methane leaks from North American natural gas systems. Science, 343 ( 6172 ), 733 â 735. https://doi.org/10.1126/science.1247045
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.