Show simple item record

Increased activity of mesenchymal ALK2â BMP signaling causes posteriorly truncated microglossia and disorganization of lingual tissues

dc.contributor.authorIshan, Mohamed
dc.contributor.authorChen, Guiqian
dc.contributor.authorSun, Chenming
dc.contributor.authorChen, Shi‐you
dc.contributor.authorKomatsu, Yoshihiro
dc.contributor.authorMishina, Yuji
dc.contributor.authorLiu, Hong‐xiang
dc.date.accessioned2020-02-05T15:09:29Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-02-05T15:09:29Z
dc.date.issued2020-01
dc.identifier.citationIshan, Mohamed; Chen, Guiqian; Sun, Chenming; Chen, Shi‐you ; Komatsu, Yoshihiro; Mishina, Yuji; Liu, Hong‐xiang (2020). "Increased activity of mesenchymal ALK2â BMP signaling causes posteriorly truncated microglossia and disorganization of lingual tissues." genesis 58(1): n/a-n/a.
dc.identifier.issn1526-954X
dc.identifier.issn1526-968X
dc.identifier.urihttps://hdl.handle.net/2027.42/153778
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othertongue mesenchyme
dc.subject.otherapoptosis
dc.subject.otherbranchial arch
dc.subject.othermicroglossia
dc.subject.otherproliferation
dc.subject.otherbone morphogenetic protein signaling
dc.titleIncreased activity of mesenchymal ALK2â BMP signaling causes posteriorly truncated microglossia and disorganization of lingual tissues
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153778/1/dvg23337.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153778/2/dvg23337_am.pdf
dc.identifier.doi10.1002/dvg.23337
dc.identifier.sourcegenesis
dc.identifier.citedreferenceRen, W., Aihara, E., Lei, W., Gheewala, N., Uchiyama, H., Margolskee, R. F., â ¦ Jiang, P. ( 2017 ). Transcriptome analyses of taste organoids reveal multiple pathways involved in taste cell generation. Scientific Reports, 7 ( 1 ), 4004. https://doi.org/10.1038/s41598-017-04099-5
dc.identifier.citedreferenceLiu, H.â X., Henson, B. S., Zhou, Y., D’Silva, N. J., & Mistretta, C. M. ( 2008 ). Fungiform papilla pattern: EGF regulates interâ papilla lingual epithelium and decreases papilla number by means of PI3K/Akt, MEK/ERK, and p38 MAPK signaling. Developmental dynamics, 237 ( 9 ), 2378 â 2393. https://doi.org/10.1002/dvdy.21657
dc.identifier.citedreferenceLiu, H. X., Komatsu, Y., Mishina, Y., & Mistretta, C. M. ( 2012 ). Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds. Developmental Biology, 368 ( 2 ), 294 â 303. https://doi.org/10.1016/j.ydbio.2012.05.028
dc.identifier.citedreferenceLiu, H.â X., MacCallum, D. K., Edwards, C., Gaffield, W., & Mistretta, C. M. ( 2004 ). Sonic hedgehog exerts distinct, stageâ specific effects on tongue and taste papilla development. Developmental Biology, 276 ( 2 ), 280 â 300. https://doi.org/10.1016/j.ydbio.2004.07.042
dc.identifier.citedreferenceMbiene, J.â P., Maccallum, D. K., & Mistretta, C. M. ( 1997 ). Organ cultures of embryonic rat tongue support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia. Journal of Comparative Neurology, 377 ( 3 ), 324 â 340. https://doi.org/10.1002/(SICI)1096-9861(19970120)377:3<324::AID-CNE2>3.0.CO;2-4
dc.identifier.citedreferenceMerrill, A. E., Eames, B. F., Weston, S. J., Heath, T., & Schneider, R. A. ( 2008 ). Mesenchymeâ dependent BMP signaling directs the timing of mandibular osteogenesis. Development, 135 ( 7 ), 1223 â 1234. https://doi.org/10.1242/dev.015933
dc.identifier.citedreferenceMillington, G., Elliott, K. H., Chang, Y.â T., Chang, C.â F., Dlugosz, A., & Brugmann, S. A. ( 2017 ). Ciliaâ dependent GLI processing in neural crest cells is required for tongue development. Developmental Biology, 424 ( 2 ), 124 â 137. https://doi.org/10.1016/j.ydbio.2017.02.021
dc.identifier.citedreferenceMistretta, C. M. ( 1972 ). Topographical and histological study of the developing rat tongue, palate and taste buds. In J. F. Bosma (Ed.), Oral sensation and perception: The mouth of the infant (pp. 163 â 187 ). Springfield, IL: Thomas.
dc.identifier.citedreferenceMistretta, C. M., Liu, H.â X., Gaffield, W., & MacCallum, D. K. ( 2003 ). Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: Fungiform papillae double in number and form in novel locations in dorsal lingual epithelium. Developmental Biology, 254 ( 1 ), 1 â 18. https://doi.org/10.1016/S0012-1606(02)00014-3
dc.identifier.citedreferenceParada, C., & Chai, Y. ( 2015 ). Mandible and tongue development. Current Topics in Developmental Biology, 115, 31 â 58. https://doi.org/10.1016/bs.ctdb.2015.07.023
dc.identifier.citedreferenceParada, C., Han, D., & Chai, Y. ( 2012 ). Molecular and cellular regulatory mechanisms of tongue myogenesis. Journal of Dental Research, 91 ( 6 ), 528 â 535. https://doi.org/10.1177/0022034511434055
dc.identifier.citedreferencePietsch, E. C., Sykes, S. M., McMahon, S. B., & Murphy, M. E. ( 2008 ). The p53 family and programmed cell death. Oncogene, 27 ( 50 ), 6507 â 6521. https://doi.org/10.1038/onc.2008.315
dc.identifier.citedreferencePuthiyaveetil, J. S. V., Kota, K., Chakkarayan, R., Chakkarayan, J., & Thodiyil, A. K. P. ( 2016 ). Epithelialâ Mesenchymal interactions in tooth development and the significant role of growth factors and genes with emphasis on mesenchyme: A review. Journal of Clinical and Diagnostic Research, 10 ( 9 ), ZE05 â ZE09. https://doi.org/10.7860/JCDR/2016/21719.8502
dc.identifier.citedreferenceRibatti, D., & Santoiemma, M. ( 2014 ). Epithelialâ mesenchymal interactions: A fundamental developmental biology mechanism. The International Journal of Developmental Biology, 58 ( 5 ), 303 â 306. https://doi.org/10.1387/ijdb.140143dr
dc.identifier.citedreferenceRinon, A., Lazar, S., Marshall, H., Büchmannâ Møller, S., Neufeld, A., Elhananyâ Tamir, H., â ¦ Tzahor, E. ( 2007 ). Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development, 134 ( 17 ), 3065 â 3075. https://doi.org/10.1242/dev.002501
dc.identifier.citedreferenceSerbedzija, G. N., Bronnerâ Fraser, M., & Fraser, S. E. ( 1992 ). Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development, 116 ( 2 ), 297 â 307.
dc.identifier.citedreferenceSuga, T., Fukui, T., Shinohara, A., Luan, X., Diekwisch, T. G. H., Morito, M., & Yamane, A. ( 2007 ). BMP2, BMP4, and their receptors are expressed in the differentiating muscle tissues of mouse embryonic tongue. Cell and Tissue Research, 329 ( 1 ), 103 â 117. https://doi.org/10.1007/s00441-007-0416-4
dc.identifier.citedreferenceThesleff, I. ( 2003 ). Epithelialâ mesenchymal signalling regulating tooth morphogenesis. Journal of Cell Science, 116 ( 9 ), 1647 â 1648. https://doi.org/10.1242/jcs.00410
dc.identifier.citedreferenceThirumangalathu, S., Harlow, D. E., Driskell, A. L., Krimm, R. F., & Barlow, L. A. ( 2009 ). Fate mapping of mammalian embryonic taste bud progenitors. Development, 136 ( 9 ), 1519 â 1528. https://doi.org/10.1242/dev.029090
dc.identifier.citedreferenceTrainor, P. A. ( 2015 ). Preface. In P. A. Trainor (Ed.), Current topics in developmental biology (Vol. 111, pp. xv â xvi ). Cambridge, MA: Academic Press.
dc.identifier.citedreferenceVenkatesan, N., Boggs, K., & Liu, H.â X. ( 2016 ). Taste bud Labeling in whole tongue epithelial sheet in adult mice. Tissue Engineering. Part C, Methods, 22 ( 4 ), 332 â 337. https://doi.org/10.1089/ten.TEC.2015.0377
dc.identifier.citedreferenceWang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., â ¦ Shi, L. L. ( 2014 ). Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes & Diseases, 1 ( 1 ), 87 â 105. https://doi.org/10.1016/j.gendis.2014.07.005
dc.identifier.citedreferenceYang, K., Hitomi, M., & Stacey, D. W. ( 2006 ). Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Division, 1, 32 â 32. https://doi.org/10.1186/1747-1028-1-32
dc.identifier.citedreferenceZhong, Z., Zhao, H., Mayo, J., & Chai, Y. ( 2015 ). Different requirements for Wnt signaling in tongue myogenic subpopulations. Journal of Dental Research, 94 ( 3 ), 421 â 429. https://doi.org/10.1177/0022034514566030
dc.identifier.citedreferenceZhou, Y., Liu, H.â X., & Mistretta, C. M. ( 2006 ). Bone morphogenetic proteins and noggin: Inhibiting and inducing fungiform taste papilla development. Developmental Biology, 297 ( 1 ), 198 â 213. https://doi.org/10.1016/j.ydbio.2006.05.022
dc.identifier.citedreferenceZhu, X.â J., Yuan, X., Wang, M., Fang, Y., Liu, Y., Zhang, X., â ¦ Zhang, Z. ( 2017 ). A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. The Journal of Biological Chemistry, 292 ( 22 ), 9409 â 9419. https://doi.org/10.1074/jbc.M117.789438
dc.identifier.citedreferenceBeites, C. L., Hollenbeck, P. L. W., Kim, J., Lovellâ Badge, R., Lander, A. D., & Calof, A. L. ( 2009 ). Follistatin modulates a BMP autoregulatory loop to control the size and patterning of sensory domains in the developing tongue. Development, 136 ( 13 ), 2187 â 2197. https://doi.org/10.1242/dev.030544
dc.identifier.citedreferenceBoggs, K., Venkatesan, N., Mederacke, I., Komatsu, Y., Stice, S., Schwabe, R. F., â ¦ Liu, H. X. ( 2016 ). Contribution of underlying connective tissue cells to taste buds in mouse tongue and soft palate. PLoS One, 11 ( 1 ), e0146475. https://doi.org/10.1371/journal.pone.0146475
dc.identifier.citedreferenceBragdon, B., Moseychuk, O., Saldanha, S., King, D., Julian, J., & Nohe, A. ( 2011 ). Bone morphogenetic proteins: A critical review. Cellular Signalling, 23 ( 4 ), 609 â 620. https://doi.org/10.1016/j.cellsig.2010.10.003
dc.identifier.citedreferenceMayor, R., & Theveneau, E. ( 2013 ). The neural crest. Development, 140 ( 11 ), 2247 â 2251. https://doi.org/10.1242/dev.091751
dc.identifier.citedreferenceCastillo, D., Seidel, K., Salcedo, E., Ahn, C., de Sauvage, F. J., Klein, O. D., & Barlow, L. A. ( 2014 ). Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium. Development, 141 ( 15 ), 2993 â 3002. https://doi.org/10.1242/dev.107631
dc.identifier.citedreferenceChai, Y., & Maxson, R. E., Jr. ( 2006 ). Recent advances in craniofacial morphogenesis. Developmental Dynamics, 235 ( 9 ), 2353 â 2375. https://doi.org/10.1002/dvdy.20833
dc.identifier.citedreferenceChandrashekar, L., Kashinath, K. R., & Suhas, S. ( 2014 ). Labial ankyloglossia associated with oligodontia: A case report. Journal of Dentistry, 11 ( 4 ), 481 â 484.
dc.identifier.citedreferenceCobourne, M. T., Iseki, S., Birjandi, A. A., Adel Alâ Lami, H., Thauvinâ Robinet, C., Xavier, G. M., & Liu, K. J. ( 2018 ). How to make a tongue: Cellular and molecular regulation of muscle and connective tissue formation during mammalian tongue development. Seminars in Cell & Developmental Biology, 91, 45 â 54. https://doi.org/10.1016/j.semcdb.2018.04.016
dc.identifier.citedreferenceCordero, D. R., Brugmann, S., Chu, Y., Bajpai, R., Jame, M., & Helms, J. A. ( 2011 ). Cranial neural crest cells on the move: Their roles in craniofacial development. American Journal of Medical Genetics. Part A, 155A ( 2 ), 270 â 279. https://doi.org/10.1002/ajmg.a.33702
dc.identifier.citedreferenceFarbman, A. I., & Mbiene, J.â P. ( 1991 ). Early development and innervation of taste budâ bearing papillae on the rat tongue. Journal of Comparative Neurology, 304 ( 2 ), 172 â 186. https://doi.org/10.1002/cne.903040203
dc.identifier.citedreferenceFritzsch, B., Sarai, P. A., Barbacid, M., & Silosâ Santiago, I. ( 1997 ). Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds. International Journal of Developmental Neuroscience, 15 ( 4 ), 563 â 576. https://doi.org/10.1016/S0736-5748(96)00111-6
dc.identifier.citedreferenceFukuda, T., Scott, G., Komatsu, Y., Araya, R., Kawano, M., Ray, M. K., â ¦ Mishina, Y. ( 2006 ). Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2. Genesis, 44 ( 4 ), 159 â 167. https://doi.org/10.1002/dvg.20201
dc.identifier.citedreferenceGrönroos, E., Kingston, I. J., Ramachandran, A., Randall, R. A., Vizán, P., & Hill, C. S. ( 2012 ). Transforming growth factor β inhibits bone morphogenetic proteinâ induced transcription through novel phosphorylated Smad1/5â Smad3 complexes. Molecular and Cellular Biology, 32 ( 14 ), 2904 â 2916. https://doi.org/10.1128/MCB.00231-12
dc.identifier.citedreferenceIto, A., Nosrat, I. V., & Nosrat, C. A. ( 2010 ). Taste cell formation does not require gustatory and somatosensory innervation. Neuroscience Letters, 471 ( 3 ), 189 â 194. https://doi.org/10.1016/j.neulet.2010.01.039
dc.identifier.citedreferenceIwata, J.â I., Suzuki, A., Pelikan, R. C., Ho, T.â V., & Chai, Y. ( 2013 ). Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects. The Journal of Biological Chemistry, 288 ( 41 ), 29760 â 29770. https://doi.org/10.1074/jbc.M113.493551
dc.identifier.citedreferenceJung, H.â S., Oropeza, V., & Thesleff, I. ( 1999 ). Shh, Bmpâ 2, Bmpâ 4 and Fgfâ 8 are associated with initiation and patterning of mouse tongue papillae. Mechanisms of Development, 81 ( 1 ), 179 â 182. https://doi.org/10.1016/S0925-4773(98)00234-2
dc.identifier.citedreferenceJussila, M., & Thesleff, I. ( 2012 ). Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harbor Perspectives in Biology, 4 ( 4 ), a008425 â a008425. https://doi.org/10.1101/cshperspect.a008425
dc.identifier.citedreferenceKawasaki, K., Porntaveetus, T., Oommen, S., Ghafoor, S., Kawasaki, M., Otsukaâ Tanaka, Y., â ¦ Ohazama, A. ( 2012 ). Bmp signalling in filiform tongue papillae development. Archives of Oral Biology, 57 ( 6 ), 805 â 813. https://doi.org/10.1016/j.archoralbio.2011.11.014
dc.identifier.citedreferenceLeikola, A. ( 1976 ). The neural crest: Migrating cells in embryonic development. Folia Morphologica, 24 ( 2 ), 155 â 172.
dc.identifier.citedreferenceLi, L., Wang, Y., Lin, M., Yuan, G., Yang, G., Zheng, Y., & Chen, Y. ( 2013 ). Augmented BMPRIAâ mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation. PLoS One, 8 ( 6 ), e66107. https://doi.org/10.1371/journal.pone.0066107
dc.identifier.citedreferenceLiu, H.â X., Grosse, A. M. S., Walton, K. D., Saims, D. A., Gumucio, D. L., & Mistretta, C. M. ( 2009 ). WNT5a in tongue and fungiform papilla development. Annals of the New York Academy of Sciences, 1170, 11 â 17. https://doi.org/10.1111/j.1749-6632.2009.04369.x
dc.identifier.citedreferenceLiu, H.â X., Grosse, A. S., Iwatsuki, K., Mishina, Y., Gumucio, D. L., & Mistretta, C. M. ( 2012 ). Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development. Developmental Biology, 361 ( 1 ), 39 â 56. https://doi.org/10.1016/j.ydbio.2011.10.009
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.