Show simple item record

Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010)

dc.contributor.authorGuevara, Mario
dc.contributor.authorArroyo, Carlos
dc.contributor.authorBrunsell, Nathaniel
dc.contributor.authorCruz, Carlos O.
dc.contributor.authorDomke, Grant
dc.contributor.authorEquihua, Julian
dc.contributor.authorEtchevers, Jorge
dc.contributor.authorHayes, Daniel
dc.contributor.authorHengl, Tomislav
dc.contributor.authorIbelles, Alejandro
dc.contributor.authorJohnson, Kris
dc.contributor.authorJong, Ben
dc.contributor.authorLibohova, Zamir
dc.contributor.authorLlamas, Ricardo
dc.contributor.authorNave, Lucas
dc.contributor.authorOrnelas, Jose L.
dc.contributor.authorPaz, Fernando
dc.contributor.authorRessl, Rainer
dc.contributor.authorSchwartz, Anita
dc.contributor.authorVictoria, Arturo
dc.contributor.authorWills, Skye
dc.contributor.authorVargas, Rodrigo
dc.date.accessioned2020-03-17T18:26:52Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:26:52Z
dc.date.issued2020-03
dc.identifier.citationGuevara, Mario; Arroyo, Carlos; Brunsell, Nathaniel; Cruz, Carlos O.; Domke, Grant; Equihua, Julian; Etchevers, Jorge; Hayes, Daniel; Hengl, Tomislav; Ibelles, Alejandro; Johnson, Kris; Jong, Ben; Libohova, Zamir; Llamas, Ricardo; Nave, Lucas; Ornelas, Jose L.; Paz, Fernando; Ressl, Rainer; Schwartz, Anita; Victoria, Arturo; Wills, Skye; Vargas, Rodrigo (2020). "Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010)." Global Biogeochemical Cycles 34(3): no-no.
dc.identifier.issn0886-6236
dc.identifier.issn1944-9224
dc.identifier.urihttps://hdl.handle.net/2027.42/154249
dc.description.abstractSoil organic carbon (SOC) information is fundamental for improving global carbon cycle modeling efforts, but discrepancies exist from country‐to‐global scales. We predicted the spatial distribution of SOC stocks (topsoil; 0–30 cm) and quantified modeling uncertainty across Mexico and the conterminous United States (CONUS). We used a multisource SOC dataset (>10 000 pedons, between 1991 and 2010) coupled with a simulated annealing regression framework that accounts for variable selection. Our model explained ~50% of SOC spatial variability (across 250‐m grids). We analyzed model variance, and the residual variance of six conventional pedotransfer functions for estimating bulk density to calculate SOC stocks. Two independent datasets confirmed that the SOC stock for both countries represents between 46 and 47 Pg with a total modeling variance of ±12 Pg. We report a residual variance of 10.4 ±5.1 Pg of SOC stocks calculated from six pedotransfer functions for soil bulk density. When reducing training data to define decades with relatively higher density of observations (1991–2000 and 2001–2010, respectively), model variance for predicted SOC stocks ranged between 41 and 55 Pg. We found nearly 42% of SOC across Mexico in forests and 24% in croplands, whereas 31% was found in forests and 28% in croplands across CONUS. Grasslands and shrublands stored 29 and 35% of SOC across Mexico and CONUS, respectively. We predicted SOC stocks >30% below recent global estimates that do not account for uncertainty and are based on legacy data. Our results provide insights for interpretation of estimates based on SOC legacy data and benchmarks for improving regional‐to‐global monitoring efforts.Key PointsMultisource topsoil organic carbon prediction and prediction variance in Mexico and the conterminous United StatesCalculated stocks of 46–47 Pg of SOC (0‐ to 30‐cm depth, years 1991–2010) using a simulated annealing regression frameworkPredicted stocks >30% below recent global estimates that are largely based on legacy data
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othersimulated annealing
dc.subject.otheruncertainty
dc.subject.othersoil organic carbon
dc.subject.otherspatial variability
dc.titleSoil Organic Carbon Across Mexico and the Conterminous United States (1991–2010)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154249/1/gbc20950_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154249/2/gbc20950-sup-0003-2019GB006219-ts02.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154249/3/gbc20950.pdf
dc.identifier.doi10.1029/2019GB006219
dc.identifier.sourceGlobal Biogeochemical Cycles
dc.identifier.citedreferencePaz Pellat, F., Argumedo Espinoza, J., Cruz Gaistardo, C. O., Etchevers, J. D., & de Jong, B. ( 2016 ). Distribución especial y temporal del carbono orgánico del suelo en los ecosistemas terrestres. Terra Latinoamericana, 34 ( 3 ), 289 – 310.
dc.identifier.citedreferenceNelson, D. W., & Sommers, L. E. ( 1982 ). Total carbon, organic carbon, and organic matter. In A. L. Page, et al. (Eds.), Methods of soil Analysis. Part 2, Agron. Monogr., ( 2nd ed., Vol. 9, pp. 539 – 580 ). Madison, WI: ASA and SSSA.
dc.identifier.citedreferenceNorth American Land Cover at 250 m spatial resolution ( 2010 ). Produced by Natural Resources Canada/Canadian Center for Remote Sensing (NRCan/CCRS), United States Geological Survey (USGS); Insituto Nacional de Estadística y Geografía (INEGI), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and Comisión Nacional Forestal (CONAFOR).
dc.identifier.citedreferenceOgle, S. M., Breidt, F. J., Easter, M., Williams, S., Killian, K., & Paustian, K. ( 2010 ). Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process‐based model. Global Change Biology, 16, 810 – 822.
dc.identifier.citedreferenceOliver, M. A., & Webster, R. ( 2014 ). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113, 56 – 69. https://doi.org/10.1016/j.catena.2013.09.006
dc.identifier.citedreferenceO’Rourke, S. M., Angers, D. A., Holden, N. M., & McBratney, A. B. ( 2015 ). Soil organic carbon across scales. Global Change Biology, 21 ( 10 ), 3561 – 3574. https://doi.org/10.1111/gcb.12959
dc.identifier.citedreferencePadarian, J., Minasny, B., & McBratney, A. B. ( 2015 ). Using Google’s cloud‐based platform for digital soil mapping. Computers & Geosciences, 83, 80 – 88.
dc.identifier.citedreferencePaustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., Dungait, J., Ellert, B., Frank, S., Goddard, T., Govaerts, B., Grundy, M., Henning, M., Izaurralde, R. C., Madaras, M., McConkey, B., Porzig, E., Rice, C., Searle, R., Seavy, N., Skalsky, R., Mulhern, W., & Jahn, M. ( 2019 ). Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Management, 10 ( 6 ), 567 – 587. https://doi.org/10.1080/17583004.2019.1633231
dc.identifier.citedreferencePike, R. J., Evans, I. S., & Hengl, T. ( 2009 ). Chapter 1 Geomorphometry: A Brief Guide. In Developments in Soil Science (Vol. 33, pp. 3 – 30 ). Elsevier.
dc.identifier.citedreferencePoeplau, C., Vos, C., & Don, A. ( 2017 ). Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. The Soil, 3, 61 – 66.
dc.identifier.citedreferenceR Core Team ( 2018 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r‐project.org/
dc.identifier.citedreferenceRamcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S., & Thompson, J. ( 2018 ). Soil property and class maps of the conterminous United States at 100‐meter spatial resolution. Soil Science Society of America Journal, 82, 186 – 201. https://doi.org/10.2136/sssaj2017.04.0122
dc.identifier.citedreferenceReuter, H. I., & Hengl, T. ( 2012 ). Worldgrids—A public repository of global soil covariates. In B. Miasny, B. P. Malone, & A. B. McBratney (Eds.), Digital property and class maps of the conterminous—Proceedings of the 5th Global Workshop on Digital Soil Mapping, (pp. 287 – 292. Available). Sydney: CRC Press. https://doi.org/10.1201/b12728‐57
dc.identifier.citedreferenceSaini, G. ( 1966 ). Organic matter as a measure of bulk density of soil. Nature, 210 ( 5042 ), 1295 – 1296.
dc.identifier.citedreferenceSanchez, P. A., Ahamed, S., Carré, F., Hartemink, A. E., Hempel, J., Huising, J., Lagacherie, P., McBratney, A. B., McKenzie, N. J., de Lourdes Mendonça‐Santos, M., Minasny, B., Montanarella, L., Okoth, P., Palm, C. A., Sachs, J. D., Shepherd, K. D., Vågen, T.‐G., Vanlauwe, B., Walsh, M. G., Winowiecki, L. A., & Zhang, G.‐L. ( 2009 ). Digital soil map of the world. Science, 325 ( 5941 ), 680 – 681. https://doi.org/10.1126/science.1175084
dc.identifier.citedreferenceSanderman, J., Hengl, T., & Fiske, G. J. ( 2017 ). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114, 9575 – 9580.
dc.identifier.citedreferenceSiebe, C., Jahn, R., & Stahr, K. ( 2006 ). Manual para la descripción y evaluación ecológica de suelos en el campo, ( 2nd ed. ). Sociedad Mexicana de la Ciencia del Suelo A. C.: Publicación Especial.
dc.identifier.citedreferenceSingh, B. P., Setia, R., Wiesmeier, M., & Kunhikrishnan, A. ( 2018 ). Agricultural Management Practices and Soil Organic Carbon Storage. Soil Carbon Storage, 207 – 244. https://doi.org/10.1016/b978‐0‐12‐812766‐7.00007‐x
dc.identifier.citedreferenceSoil Survey Staff ( 1999 ). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, ( 2nd ed. p. 436 ). Washington, DC: Natural Resources Conservation Service. U.S. Department of Agriculture Handbook.
dc.identifier.citedreferenceSoil Survey Staff. 2014. Soil carbon assessment: methodology, sampling, and summary. Soil Survey Investigations Report No. 51, Version 2.0. R. Burt and Soil Survey Staff (ed.). Washington, DC: U.S. Department of Agriculture, Natural Resources Conservation Service. 487 pp.
dc.identifier.citedreferenceSoil Survey Staff and T. Loecke. 2016. Rapid carbon assessment: methodology, sampling, and summary. S. Wills (ed.). Washington, DC: U.S. Department of Agriculture, Natural Resources Conservation Service.
dc.identifier.citedreferenceStockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. R., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., Whitehead, D., & Zimmermann, M. ( 2013 ). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80 – 99. https://doi.org/10.1016/j.agee.2012.10.001
dc.identifier.citedreferenceStockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D., Montanarella, L., Hong, S. Y., Rawlins, B. G., & Field, D. J. ( 2015 ). Global soil organic carbon assessment. Global Food Security, 6, 9 – 16. https://doi.org/10.1016/j.gfs.2015.07.001
dc.identifier.citedreferenceStoorvogel, J. J., Bakkenes, M., Temme, A. J. A. M., Batjes, N. H., & ten Brink, B. J. E. ( 2016 ). S‐World: A global soil map for environmental modelling. Land Degradation & Development, 28, 22 – 33.
dc.identifier.citedreferenceSzatmári, G., Barta, K., & Pásztor, L. ( 2015 ). An application of a spatial simulated annealing sampling optimization algorithm to support digital soil mapping. Hungarian Geographical Bulletin, 64 ( 1 ), 35 – 48. https://doi.org/10.15201/hungeobull.64.1.4
dc.identifier.citedreferenceTank, S. E., Fellman, J. B., Hood, E., & Kritzberg, E. S. ( 2018 ). Beyond respiration: Controls on lateral carbon fluxes across the terrestrial‐aquatic interface. Limnology and Oceanography Letters, 3 ( 3 ), 76 – 88.
dc.identifier.citedreferenceTian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R., Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A., Jain, A. K., Lei, H., Mao, J., Pan, S., Post, W. M., Peng, S., Poulter, B., Ren, W., Ricciuto, D., Schaefer, K., Shi, X., Tao, B., Wang, W., Wei, Y., Yang, Q., Zhang, B., & Zeng, N. ( 2015 ). Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochemical Cycles, 29, 775 – 792. https://doi.org/10.1002/2014GB005021
dc.identifier.citedreferenceTifafi, M., Guenet, B., & Hatté, C. ( 2017 ). Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France. Global Biogeochemical Cycles, 32, 42 – 56. https://doi.org/10.1002/2017GB005678
dc.identifier.citedreferencevan Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen, A., Pendall, E., Reich, P. B., Schuur, E. A. G., & Hungate, B. A. ( 2018 ). Predicting soil carbon loss with warming. Nature, 554 ( 7693 ), E4 – E5. https://doi.org/10.1038/nature25745
dc.identifier.citedreferenceVargas, R., Alcaraz‐Segura, D., Birdsey, R., Brunsell, N. A., Cruz‐Gaistardo, C. O., de Jong, B., Etchevers, J., Guevara, M., Hayes, D. J., Johnson, K., Loescher, H. W., Paz, F., Ryu, Y., Sanchez‐Mejia, Z., & Toledo‐Gutierrez, K. P. ( 2017 ). Enhancing interoperability to facilitate implementation of REDD+: case study of Mexico. Carbon Management, 8 ( 1 ), 57 – 65. https://doi.org/10.1080/17583004.2017.1285177
dc.identifier.citedreferenceVaysse, K., & Lagacherie, P. ( 2017 ). Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma, 291, 55 – 64.
dc.identifier.citedreferenceVázquez‐Lule, A., Colditz, R., Herrera‐Silveira, J., Guevara, M., Rodríguez‐Zúñiga, M. T., Cruz, I., Ressl, R., & Vargas, R. ( 2019 ). Greenness trends and carbon stocks of mangroves across Mexico. Environmental Research Letters, 14 ( 7 ), p.075010.
dc.identifier.citedreferenceVillarreal, S., Guevara, M., Alcaraz‐Segura, D., Brunsell, N., Hayes, D., Loescher, H., & Vargas, R. ( 2018 ). Ecosystem functional diversity and the representativeness of environmental networks across the conterminous United States. Agricultural and Forest Meteorology, 262, 423 – 433. https://doi.org/10.1016/j.agrformet.2018.07.016
dc.identifier.citedreferenceViscarra‐Rossel, R. A., Webster, R., Bui, E. N., & Baldock, J. A. ( 2014 ). Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Global Change Biology, 20 ( 9 ), 2953 – 2970. https://doi.org/10.1111/gcb.12569
dc.identifier.citedreferenceVitharana, U. W. A., Mishra, U., & Mapa, R. B. ( 2019 ). National soil organic carbon estimates can improve global estimates. Geoderma, 337, 55 – 64. https://doi.org/10.1016/j.geoderma.2018.09.005
dc.identifier.citedreferenceWalsh, B., Ciais, P., Janssens, I. Peñuelas, J., Riahi, K., Rydzak, F., van Vuuren, D. P., & Obersteiner, M. ( 2017 ). Pathways for balancing CO 2 emissions and sinks. Nature Communications, 8, 14856. https://doi-org.udel.idm.oclc.org/10.1038/ncomms14856
dc.identifier.citedreferenceWieder, W. R., Boehnert, J., Bonan, G. B., & Langseth, M. ( 2014 ). Regridded Harmonized World Soil Database v1.2. Data set. Available on‐line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1247
dc.identifier.citedreferenceWieder, W. R., Cleveland, C. C., Smith, W. K., & Todd‐Brown, K. ( 2015 ). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441 – 444.
dc.identifier.citedreferenceWijewardane, N. K., Ge, Y., Wills, S., & Loecke, T. ( 2016 ). Prediction of soil carbon in the conterminous United States: Visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project. Soil Science Society of America Journal, 80, 973.
dc.identifier.citedreferenceWilson, J. P. ( 2012 ). Digital terrain modeling. Geomorphology, 137, 107 – 121.
dc.identifier.citedreferenceYigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., & Vargas, R. (Eds) ( 2018 ). Soil organic carbon mapping cookbook, ( 2nd ed. p. 220 ). Rome, FAO.
dc.identifier.citedreferenceAdame, M. F., Santini, N. S., Tovilla, C., Vázquez‐Lule, A., & Castro, L. ( 2015 ). Carbon stocks and soil sequestration rates of riverine mangroves and freshwater wetlands. Biogeosciences Discussions, 12, 1015 – 1045.
dc.identifier.citedreferenceAdams, W. ( 1973 ). The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. European Journal of Soil Science, 24 ( 1 ), 10 – 17.
dc.identifier.citedreferenceAdhikari, K., & Hartemink, A. E. ( 2017 ). Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA. Geoderma Regional, 10, 115 – 125. https://doi.org/10.1016/j.geodrs.2017.07.003
dc.identifier.citedreferenceAd‐hoc‐AG‐Boden. ( 2005 ). Bodenkundliche Kartieranleitung – 5. Auflage. Hannover, Germany. 438 pp.
dc.identifier.citedreferenceArrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., Young, Y. S., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie, N. J., Mendonca‐Santos, M. D. L., Minasny, B., Montanarella, L., Odeh, I. O. A., Sanchez, P. A., Thompson, J. A., & Zhang, G. L. ( 2014 ). Chapter Three—GlobalSoilMap: Toward a fine‐resolution global grid of soil properties. In L. S. Donald (Ed.), Advances in Agronomy [Internet], (pp. 93 – 134 ). Academic Press.
dc.identifier.citedreferenceArrouays, D., Lagacherie, P., & Hartemink, A. E. ( 2017 ). Digital soil mapping across the globe. Geoderma Regional, 9, 1 – 4.
dc.identifier.citedreferenceAtwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Ewers Lewis, C. J., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. ( 2017 ). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7 ( 7 ), 523 – 528. https://doi.org/10.1038/nclimate3326
dc.identifier.citedreferenceBanwart, S. S., Black, H. B., Cai, Z. Z., Gicheru, P. G., Joosten, H. J., Victoria, R. V., & Eleanor E. Milne, et al. ( 2014 ). Benefits of soil carbon: Report on the outcomes of an International Scientific Committee on Problems of the Environment Rapid Assessment Workshop. Carbon Management, 5 ( 2 ), 185 – 192.
dc.identifier.citedreferenceBanwart, S. A., Bernasconi, S. M., Blum, W. E. H., de Souza, D. M., Chabaux, F., Duffy, C., Kercheva, M., Krám, P., Lair, G. J., Lundinm, L., Menon, M., Nikolaidis, N. P., Novak, M., Panagos, P., Ragnarsdottir, K. V., Robinson, D. A., Rousseva, S., de Ruiter, P., van Gaans, P., Weng, L., White, T., Zhang, B. ( 2017 ). Soil Functions in Earth’s Critical Zone. Quantifying and Managing Soil Functions in Earth’s Critical Zone ‐ Combining Experimentation and Mathematical Modelling, 1 – 27. https://doi.org/10.1016/bs.agron.2016.11.001
dc.identifier.citedreferenceBatjes, N. H. ( 2016 ). Harmonized soil property values for broad‐scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61 – 68.
dc.identifier.citedreferenceBatjes, N. H., Ribeiro, E., van Oostrum, A., Leenaars, J., Hengl, T., & Mendes de Jesus, J. ( 2017 ). WoSIS: providing standardised soil profile data for the world. Earth System Science Data, 9, 1 – 14.
dc.identifier.citedreferenceBishop, T. F. A., McBratney, A. B., & Laslett, G. M. ( 1999 ). Modelling soil attribute depth functions with equal‐area quadratic smoothing splines. Geoderma, 91, 27 – 45.
dc.identifier.citedreferenceBiwas, A., & Zhang, Y. ( 2018 ). Sampling Designs for Validating Digital Soil Maps: A Review. Pedosphere, 28 ( 1 ), 1 – 15. https://doi.org/10.1016/s1002‐0160(18)60001‐3
dc.identifier.citedreferenceBliss, N. B., Waltman, S. W., West, L. T., Neale, A., & Mehaffey, M. ( 2014 ). Distribution of soil organic carbon in the conterminous United States. New York, NY: Springer International Publishing.
dc.identifier.citedreferenceBolaños González, Y., Bolaños González, M. A., Paz Pellat, F., & Ponce Pulido, J. I. ( 2017 ). Estimación de carbono almacenado en bosques de oyamel y ciprés en Texcoco, Estado de México. Terra Latinoamericana, 35 ( 1 ), 73 – 86. Retrieved from. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187‐57792017000100073, https://doi.org/10.28940/terra.v35i1.243
dc.identifier.citedreferenceBond‐Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., & Vargas, R. ( 2018 ). Globally rising soil heterotrophic respiration over recent decades. Nature, 560 ( 7716 ), 80.
dc.identifier.citedreferenceBonfatti, B. R., Hartemink, A. E., Giasson, E., Tornquist, C. G., & Adhikari, K. ( 2016 ). Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma, 261, 204 – 221.
dc.identifier.citedreferenceBreiman, L. ( 2001 ). Random Forests. Machine Learning, 45, 5 – 32.
dc.identifier.citedreferenceCiais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F. M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J. D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., & Zehner, C. ( 2014 ). Current systematic carbon‐cycle observations and the need for implementing a policy‐relevant carbon observing system. Biogeosciences, 11 ( 13 ), 3547 – 3602. https://doi.org/10.5194/bg‐11‐3547‐2014
dc.identifier.citedreferenceColditz, R. R., Pouliot, D., Llamas, R. M., Homer, C., Latifovic, R., Ressl, R. A., MenesesTovar, C., Victoria Hernández, A., Richardson, K. ( 2014 ). Detection of North American landcover change between 2005 and 2010 with 250m MODIS data. PhotogrammetricEngineering & Remote Sensing, 80 ( 10 ), 918 – 924.
dc.identifier.citedreferenceCrowther, T. W., Todd‐Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel‐Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer‐Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., & Bradford, M. A. ( 2016 ). Quantifying global soil carbon losses in response to warming. Nature, 540 ( 7631 ), 104 – 108. https://doi.org/10.1038/nature20150
dc.identifier.citedreferenceCruz‐Cárdenas, G., López‐Mata, L., Ortiz‐Solorio, C. A., Villaseñor, J. L., Ortiz, E., Silva, J. T., & Estrada‐Godoy, F. ( 2014 ). Interpolation of Mexican soil properties at a scale of 1:1,000,000. Geoderma, 213, 29 – 35.
dc.identifier.citedreferenceCruz‐Gaistardo, C., & Paz‐Pellat, F. ( 2014 ). Mapa de carbono orgánico de los suelos de la República Mexicana. In F. Paz‐Pellat, J. Wong‐González, M. Bazan, & V. Saynes (Eds.), EstadoActual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2013, (p. 187 – 191 ). Texcoco, Estado de México, México, ISBN 978‐607‐96490‐1‐2: Programa Mexicano del Carbono.
dc.identifier.citedreferencede Gruijter, J. J., McBratney, A. B., Minasny, B., Wheeler, I., Malone, B. P., & Stockmann, U. ( 2016 ). Farm‐scale soil carbon auditing. Geoderma, 265, 120 – 130.
dc.identifier.citedreferenceDelgado‐Baquerizo, M., Eldridge, D. J., Maestre, F. T., Karunaratne, S. B., Trivedi, P., Reich, P. B., & Singh, B. K. ( 2017 ). Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Science Advances, 3, e1602008.
dc.identifier.citedreferenceDing, J., Chen, L., Ji, C., Hugelius, G., Li, Y., Liu, L., Qin, S., Zhang, B., Yang, G., Li, F., Fang, K., Chen, Y., Peng, Y., Zhao, X., He, H., Smith, P., Fang, J., & Yang, Y. ( 2017 ). Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10 ( 6 ), 420 – 424. https://doi.org/10.1038/ngeo2945
dc.identifier.citedreferenceDomke, G. M., Perry, C. H., Walters, B. F., Nave, L. E., Woodall, C. W., & Swanston, C. W. ( 2017 ). Toward inventory‐based estimates of soil organic carbon in forests of the United States. Ecological Applications, 27, 1223 – 1235.
dc.identifier.citedreferenceDrew, L. A. ( 1973 ). Bulk Density Estimation Based on Organic Matter Content of Some Minnesota Soils, St. Paul, Minn., School of Forestry, University of Minnesota, Digital Conservancy, available at: http://hdl.handle.net/11299/58293 (last access: 16 July 2018)
dc.identifier.citedreferenceEvans, S. E., Burke, I. C., & Lauenroth, W. K. ( 2011 ). Controls on soil organic carbon and nitrogen in Inner Mongolia, China: A cross‐continental comparison of temperate grasslands. Global Biogeochemical Cycles, 25, GB3006. https://doi.org/10.1029/2010GB003945
dc.identifier.citedreferenceFAO ( 2017 ). Soil Organic Carbon: the hidden potential. Rome, Italy: Food and Agriculture Organization of the United Nations.
dc.identifier.citedreferenceFAO and ITPS. ( 2018 ). Global Soil Organic Carbon Map (GSOCmap) Technical report. Rome. 162pp.
dc.identifier.citedreferenceFAO Guidelines for soil description Fourth edition, ( 2006 ). Rome, 109 pp. FAO and ITPS. 2018. Global Soil Organic Carbon Map (GSOCmap) Technical Report. Rome. 162 pp.
dc.identifier.citedreferenceFolberth, C., Skalský, R., Moltchanova, E., Balkovič, J., Azevedo, L. B., Obersteiner, M., & van der Velde, M. ( 2016 ). Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nature Communications, 7, 11872.
dc.identifier.citedreferenceGrigal, D., Brovold, S., Nord, W., & Ohmann, L. ( 1989 ). Bulk density of surface soils and peat in the north central united states. Canadian Journal of Soil Science, 69 ( 4 ), 895 – 900.
dc.identifier.citedreferenceGrunwald, S. ( 2009 ). Multi‐criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152, 195 – 207.
dc.identifier.citedreferenceGuerrero, E., Pérez, A., Arroyo, C., Equihua, J., & Guevara, M. ( 2014 ). Building a national framework for pedometric mapping: Soil depth as an example from Mexico. In D. Arrouays, N. McKenzie, J. Hempel, A. de Forges, & A. McBratney (Eds.), GlobalSoilMap, (pp. 103 – 108 ). Boca Raton FL: CRC Press.
dc.identifier.citedreferenceGuevara, M., Olmedo, G. F., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano Hernández, C., Arévalo, G. E., Arroyo‐Cruz, C. E., Bolivar, A., Bunning, S., Bustamante Cañas, N., Cruz‐Gaistardo, C. O., Davila, F., Dell Acqua, M., Encina, A., Figueredo Tacona, H., Fontes, F., Hernández Herrera, J. A., Ibelles Navarro, A. R., Loayza, V., Manueles, A. M., Mendoza Jara, F., Olivera, C., Osorio Hermosilla, R., Pereira, G., Prieto, P., Ramos, I. A., Rey Brina, J. C., Rivera, R., Rodríguez‐Rodríguez, J., Roopnarine, R., Rosales Ibarra, A., Rosales Riveiro, K. A., Schulz, G. A., Spence, A., Vasques, G. M., Vargas, R. R., & Vargas, R. ( 2018 ). No silver bullet for digital soil mapping: Country‐specific soil organic carbon estimates across Latin America. Soil, 4, 173 – 193. https://doi.org/10.5194/soil‐4‐173‐2018
dc.identifier.citedreferenceGuo, L., Zhang, H., Shi, T., Chen, Y., Jiang, Q., & Linderman, M. ( 2019 ). Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma, 337, 32 – 41. https://doi.org/10.1016/j.geoderma.2018.09.003
dc.identifier.citedreferenceGuo, Z., Adhikari, K., Chellasamy, M., Greve, M. B., Owens, P. R., & Greve, M. H. ( 2019 ). Selection of terrain attributes and its scale dependency on soil organic carbon prediction. Geoderma, 340, 303 – 312. https://doi.org/10.1016/j.geoderma.2019.01.023
dc.identifier.citedreferenceHarden, J. W., Hugelius, G., Ahlström, A., Blankinship, J. C., Bond‐Lamberty, B., Lawrence, C., Loisel, J., Malhotra, A., Jackson, R. B., Ogle, S. M., Phillips, C., Ryals, R., Todd‐Brown, K., Vargas, R., Vergara, S. E., Cotrufo, M. F., Keiluweit, M., Heckman, K., Crow, S. E., Silver, W. L., DeLonge, M., & Nave, L. E. ( 2017 ). Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Global Change Biology, 24, e705 – e718.
dc.identifier.citedreferenceHengl, T., & MacMillan, R. A. ( 2019 ). Predictive Soil Mapping with R ( 370 pp.). Wageningen, Netherlands: OpenGeoHub foundation. www.soilmapper.org, ISBN: 978‐0‐359‐30635‐0.
dc.identifier.citedreferenceHengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., Samuel‐Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh, M. G., & Gonzalez, M. R. ( 2014 ). SoilGrids1km—Global soil information based on automated mapping. PLoS ONE, 9 ( 8 ), e105992. https://doi.org/10.1371/journal.pone.0105992
dc.identifier.citedreferenceHengl, T., Heuvelink, G. B. M., & Stein, A. ( 2004 ). A generic framework for spatial prediction of soil variables based on regression‐kriging. Geoderma, 120 ( 1 ), 75 – 93. https://doi.org/10.1016/j.geoderma.2003.08.018
dc.identifier.citedreferenceHengl, T., Mendes, J., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer‐Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. ( 2017 ). SoilGrids250m: Global gridded soil information based on Machine Learning. PLoS ONE, 12 ( 2 ), e0169748. https://doi.org/10.1371/journal.pone.0169748
dc.identifier.citedreferenceHeuvelink, G. B. M. ( 2014 ). Uncertainty Quantification of GlobalSoilMap Products. In D. Arrouays, N. J. McKenzie, J. W. Hempel, A. C. R. de Forges, & A. B. McBratney (Eds.), GlobalSoilMap. Basis of the Global Soil Information System, (pp. 335 – 340 ). Oxon: Taylor & Francis, CRC press.
dc.identifier.citedreferenceHiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W., & Heuvelink, G. B. M. ( 2009 ). Real‐time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences, 35 ( 8 ), 1711 – 1721. https://doi.org/10.1016/j.cageo.2008.10.011
dc.identifier.citedreferenceHobley, E., Wilson, B., Wilkie, A., Gray, J., & Koen, T. ( 2015 ). Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant and Soil, 390 ( 1‐2 ), 111 – 127. https://doi.org/10.1007/s11104‐015‐2380‐1
dc.identifier.citedreferenceHoneysett, J., & Ratkowsky, D. ( 1989 ). The use of ignition loss to estimate bulk density of forest soils. European Journal of Soil Science, 40 ( 2 ), 299 – 308.
dc.identifier.citedreferenceINEGI‐Instituto Nagional de Geografia y Estadistica ( 2014 ). Diccionario de Datos Edafológicos escala 1:250000 (version 3) 55pp. http://www.inegi.org.mx/geo/contenidos/recnat/edafologia/doc/dd_edafologicos_v3_250k.pdf
dc.identifier.citedreferenceJackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. ( 2017 ). The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48.
dc.identifier.citedreferenceJeffrey, D. ( 1970 ). A note on the use of ignition loss as a means for the approximate estimation of soil bulk density. The Journal of Ecology, 297 – 299.
dc.identifier.citedreferenceJenny, H. ( 1941 ). Factors of soil formation: A system of quantitative pedology, (p. 304 ). New York: McGraw‐Hill.
dc.identifier.citedreferenceJones, C., & Falloon, P. ( 2009 ). Sources of uncertainty in global modelling of future soil organic carbon storage. In P. C. Baveye, M. Laba, & J. Mysiak (Eds.), Uncertainties in Environmental Modelling and Consequences for Policy Making, (pp. 283 – 315 ). Dordrecht: Springer Netherlands.
dc.identifier.citedreferenceJones, C., McConnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D., & Powlson, D. ( 2005 ). Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology, 11, 154 – 166.
dc.identifier.citedreferenceKarhu, K., Fritze, H., Hämäläinen, K., Vanhala, P., Jungner, H., Oinonen, M., Sonninen, E., Tuomi, M., Spetz, P., Kitunen, V., & Liski, J. ( 2010 ). Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology, 91 ( 2 ), 370 – 376. https://doi.org/10.1890/09‐0478.1
dc.identifier.citedreferenceKöchy, M., Hiederer, R., & Freibauer, A. ( 2015 ). Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. The Soil, 1, 351 – 365.
dc.identifier.citedreferenceKrasilnikov, P., Gutiérrez‐Castorena, M. d. C., Ahrens, R. J., Cruz‐Gaistardo, C. O., Sedov, S., & Solleiro‐Rebolledo, E. ( 2013 ). The Soils of Mexico. Dordrecht: Springer Netherlands.
dc.identifier.citedreferenceKirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. ( 1983 ). Optimization by simulated annealing. Science (New York, N.Y.), 220 ( 4598 ), 671 – 80. https://doi.org/10.1126/science.220.4598.671
dc.identifier.citedreferenceKuhn, M. ( 2008 ). Building predictive models in R using the caret Package. Journal of Statistical Software, 28, 1 – 26. https://doi.org/10.18637/jss.v028.i05
dc.identifier.citedreferenceLagacherie, P., Arrouays, D., Bourennane, H., Gomez, C., Martin, M., & Saby, N. P. A. ( 2019 ). How far can the uncertainty on a Digital Soil Map be known?: A numerical experiment using pseudo values of clay content obtained from Vis‐SWIR hyperspectral imagery. Geoderma, 337, 1320 – 1328. https://doi.org/10.1016/j.geoderma.2018.08.024
dc.identifier.citedreferenceLagacherie, P., & McBratney, A. B. ( 2006 ). Chapter 1 Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping. In Developments in Soil Science, (Vol. 31, pp. 3 – 22 ). Amsterdam: Elsevier.
dc.identifier.citedreferenceLajtha, K., Bailey, V. L., McFarlane, K., Paustian, K., Bachelet, D., Abramoff, R., Angers, D., Billings, S. A., Cerkowniak, D., Dialynas, Y. G., Finzi, A., French, N. H. F., Frey, S., Gurwick, N. P., Harden, J., Johnson, J. M. F., Johnson, K., Lehmann, J., Liu, S., McConkey, B., Mishra, U., Ollinger, S., Paré, D., Pellat, F. P., Richter, D. d B., Schaeffer, S. M., Schimel, J., Shaw, C., Tang, J., Todd‐Brown, K., Trettin, C., Waldrop, M., Whitman, T., & Wickland, K. ( 2018 ). Chapter 12: Soils. In N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero‐Lankao, & Z. Zhu (Eds.), Second State of the Carbon Cycle Report (SOCCR2): A sustained assessment report, (pp. 469 – 506 ). Washington, DC, USA: U.S. Global Change Research Program. https://doi.org/10.7930/SOCCR2.2018.Ch12
dc.identifier.citedreferenceMalone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. ( 2009 ). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154, 138 – 152.
dc.identifier.citedreferenceMalone, B. P., Styc, Q., Minasny, B., & McBratney, A. B. ( 2017 ). Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma, 290, 91 – 99.
dc.identifier.citedreferenceMcBratney, A., Mendonça, S. M., & Minasny, B. ( 2003 ). On digital soil mapping. Geoderma, 117, 3 – 52.
dc.identifier.citedreferenceMeinshausen, N. ( 2006 ). Quantile Regression Forests. Journal of Machine Learning Research, 7, 983 – 999.
dc.identifier.citedreferenceMinasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.‐S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O’Rourke, S., Richer‐de‐Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.‐C., Vågen, T.‐G., van Wesemael, B., & Winowiecki, L. ( 2017 ). Soil carbon 4 per mille. Geoderma, 292, 59 – 86. https://doi.org/10.1016/j.geoderma.2017.01.002
dc.identifier.citedreferenceMinasny, B., & McBratney, A. B. ( 2006 ). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32 ( 9 ), 1378 – 1388. https://doi.org/10.1016/j.cageo.2005.12.009
dc.identifier.citedreferenceMinasny, B., McBratney, A. B., & Lark, R. M. ( 2008 ). Digital soil mapping technologies for countries with sparse data infrastructures. In A. E. Hartemink, A. McBratney, & M. d. L. Mendonça‐Santos (Eds.), Digital Soil Mapping with Limited Data (pp. 15 – 30 ). Dordrecht: Springer Netherlands.
dc.identifier.citedreferenceMinasny, B., McBratney, A. B., Malone, B. P., & Wheeler, I. ( 2013 ). Digital mapping of soil carbon. In Advances in agronomy (Vol. 118, pp. 1 – 47 ). Elsevier.
dc.identifier.citedreferenceMurray‐Tortarolo, G., Friedlingstein, P., Sitch, S., Jaramillo, V. J., Murguía‐Flores, F., Anav, A., Liu, Y., Arneth, A., Arvanitis, A., Harper, A., Jain, A., Kato, E., Koven, C., Poulter, B., Stocker, B. D., Wiltshire, A., Zaehle, S., & Zeng, N. ( 2016 ). The carbon cycle in Mexico: past, present and future of C stocks and fluxes. Biogeosciences, 13 ( 1 ), 223 – 238. https://doi.org/10.5194/bg‐13‐223‐2016
dc.identifier.citedreferenceNaipal, V., Ciais, P., Wang, Y., Lauerwald, R., Guenet, B., & Van Oost, K. ( 2018 ). Global soil organic carbon removal by water erosion under climate change and land use change during AD1980–2005. Biogeosciences, 15, 4459 – 4480. https://doi.org/10.5194/bg
dc.identifier.citedreferenceNave, L. E., Domke, G. M., Hofmeister, K. L., Mishra, U., Perry, C. H., Walters, B. F., & Swanston, C. W. ( 2018 ). Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proceedings of the National Academy of Sciences, 115 ( 11 ), 2776 – 2781. https://doi.org/10.1073/pnas.1719685115
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.