Show simple item record

Ferroportin disease mutations influence manganese accumulation and cytotoxicity

dc.contributor.authorChoi, Eun-Kyung
dc.contributor.authorNguyen, Trang-Tiffany
dc.contributor.authorIwase, Shigeki
dc.contributor.authorSeo, Young Ah
dc.date.accessioned2020-03-17T18:26:56Z
dc.date.available2020-03-17T18:26:56Z
dc.date.issued2019-02
dc.identifier.citationChoi, Eun-Kyung; Nguyen, Trang-Tiffany; Iwase, Shigeki; Seo, Young Ah (2019). "Ferroportin disease mutations influence manganese accumulation and cytotoxicity." The FASEB Journal 33(2): 2228-2240.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154252
dc.description.abstractHemochromatosis is a frequent genetic disorder, characterized by the accumulation of excess iron across tissues. Mutations in the FPN1 gene, encoding a cell surface iron exporter [ferroportin (Fpn)], are responsible for hemochromatosis type 4, also known as ferroportin disease. Recently, Fpn has been implicated in the regulation of manganese (Mn), another essential nutrient required for numerous cellular enzymes. However, the roles of Fpn in Mn regulation remain ill‐defined, and the impact of disease mutations on cellular Mn levels is unknown. Here, we provide evidence that Fpn can export Mn from cells into extracellular space. Fpn seems to play protective roles in Mn‐induced cellular toxicity and oxidative stress. Finally, disease mutations interfere with the role of Fpn in controlling Mn levels as well as the stability of Fpn. These results define the function of Fpn as an exporter of both iron and Mn and highlight the potential involvement of Mn dysregulation in ferroportin disease.—Choi, E.‐K., Nguyen, T.‐T., Iwase, S., Seo, Y. A. Ferroportin disease mutations influence manganese accumulation and cytotoxicity. FASEB J. 33, 2228–2240 (2019). www.fasebj.org
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.otheriron metabolism
dc.subject.othermanganese toxicity
dc.subject.othermanganese transport
dc.titleFerroportin disease mutations influence manganese accumulation and cytotoxicity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154252/1/fsb2fj201800831r.pdf
dc.identifier.doi10.1096/fj.201800831R
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceRacette, B. A., McGee-Minnich, L., Moerlein, S. M., Mink, J. W., Videen, T. O., and Perlmutter, J. S. ( 2001 ) Welding-related parkinsonism: clinical features, treatment, and pathophysiology. Neurology 56, 8 – 13
dc.identifier.citedreferenceRice, A. E., Méndez, M. J., Hokanson, C.A., Rees, D. C., and Björkman, P. J. ( 2009 ) Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J. Mol. Biol. 386, 717 – 732
dc.identifier.citedreferenceSeo, Y. A., Elkhader, J. A., and Wessling-Resnick, M. ( 2016 ) Distribution of manganese and other biometals in flatiron mice. Biometals 29, 147 – 155
dc.identifier.citedreferenceChen, P., Chakraborty, S., Mukhopadhyay, S., Lee, E., Paoliello, M. M., Bowman, A. B., and Aschner, M. ( 2015 ) Manganese homeostasis in the nervous system. J. Neurochem. 134, 601 – 610
dc.identifier.citedreferenceGuilarte, T. R. ( 2010 ) Manganese and Parkinson’s disease: a critical review and new findings. Environ. Health Perspect. 118, 1071 – 1080
dc.identifier.citedreferenceSeo, Y. A., and Wessling-Resnick, M. ( 2015 ) Ferroportin deficiency impairs manganese metabolism in flatiron mice. FASEB J. 29, 2726 – 2733
dc.identifier.citedreferenceWu, L.J., Leenders, A. G., Cooperman, S., Meyron-Holtz, E., Smith, S., Land, W., Tsai, R Y., Berger, U. V., Sheng, Z. H., and Rouault, T. A. ( 2004 ) Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier. BrainRes. 1001, 108 – 117
dc.identifier.citedreferenceMcCarthy, R. C., and Kosman, D. J. ( 2015 ) Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell. Mol. Life Sci. 72, 709 – 727
dc.identifier.citedreferenceQuadri, M., Federico, A., Zhao, T., Breedveld, G. J., Battisti, C., Delnooz, C., Severijnen, L. A., Di Toro Mammarella, L., Mignarri, A., Monti, L., Sanna, A., Lu, P., Punzo, F., Cossu, G., Willemsen, R, Rasi, F., Oostra, B. A., van de Warrenburg, B. P., and Bonifati, V. ( 2012 ) Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am. J. Hum. Genet. 90, 467 – 477
dc.identifier.citedreferenceTuschl, K., Clayton, P. T., Gospe, S. M., Jr., Gulab, S., Ibrahim, S., Singhi, P., Aulakh, R., Ribeiro, R. T., Barsottini, O. G., Zaki, M. S., Del Rosario, M. L., Dyack, S., Price, V., Rideout, A., Gordon, K., Wevers, R. A., Chong, W. K., and Mills, P. B. ( 2012 ) Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am. J. Hum. Genet. 90, 457 – 466
dc.identifier.citedreferenceBosomworth, H. J., Thornton, J. K., Coneyworth, L. J., Ford, D., and Valentine, R. A. ( 2012 ) Efflux function, tissue-specific expression and intracellular trafficking of the Zn transporter ZnTIO indicate roles in adult Zn homeostasis. Metallomics 4, 771 – 779
dc.identifier.citedreferenceDeWitt, M. R., Chen, P., and Aschner, M. ( 2013 ) Manganese efflux in Parkinsonism: insights from newly characterized SLC30A10 mutations. Biochem. Biophys. Res. Commun. 432, 1 – 4
dc.identifier.citedreferenceLiu, X. B., Yang, F., and Haile, D. J. ( 2005 ) Functional consequences of ferroportin 1 mutations. Blood Cells Mol. Dis. 35, 33 – 46
dc.identifier.citedreferenceLok, C. Y., Merryweather-Clarke, A. T., Viprakasit, V., Chinthammitr, Y., Srichairatanakool, S., Limwongse, C., Oleesky, D., Robins, A. J., Hudson, J., Wai, P., Premawardhena, A., de Silva, H. J., Dassanayake, A., McKeown, C., Jackson, M., Gama, R, Khan, N., Newman, W., Banait, G., Chilton, A., Wilson-Morkeh, I., Weatherall, D. J., and Robson, K. J. ( 2009 ) Iron overload in the Asian community. Blood 114, 20 – 25
dc.identifier.citedreferenceCorradini, E., Montosi, G., Ferrara, F., Caleffi, A., Pignatti, E., Barelli, S., Garuti, C., and Pietrangelo, A. ( 2005 ) Lack of enterocyte iron accumulation in the ferroportin disease. Blood Cells Mol. Dis. 35, 315 – 318
dc.identifier.citedreferencePietrangelo, A., Corradini, E., Ferrara, F., Vegetti, A., De Jong, G., Luca Abbati, G., Paolo Acuri, P., Martinelli, S., and Cerofolini, E. ( 2006 ) Magnetic resonance imaging to identify classic and nonclassic forms of ferroportin disease. Blood Cells Mol. Dis. 37, 192 – 196
dc.identifier.citedreferenceCunat, S., Giansily-Blaizot, M., Bismuth, M., Blanc, F., Dereure, O., Larrey, D., Quellec, A. L., Pouderoux, P., Rose, C., Raingeard, I., Renard, E., Schved, J. F., and Aguilar-Martinez, P.; CHU Montpellier AOI 2004 Working Group. ( 2007 ) Global sequencing approach for characterizing the molecular background of hereditary iron disorders. Clin. Chem. 53, 2060 – 2069
dc.identifier.citedreferenceHetet, G., Devaux, I., Soufir, N., Grandchamp, B., and Beaumont, C. ( 2003 ) Molecular analyses of patients with hyperferritinemia and normal serum iron values reveal both L ferritin IRE and 3 new ferroportin (slcllA3) mutations. Blood 102, 1904 – 1910
dc.identifier.citedreferenceNjajou, O. T., de Jong, G., Berghuis, B., Vaessen, N., Snijders, P. J., Goossens, J. P., Wilson, J. H., Breuning, M. H., Oostra, B. A., Heutink, P., Sandkuijl, L. A., and van Duijn, C. M. ( 2002 ) Dominant hemochromatosis due to N144H mutation of SLC11A3: clinical and biological characteristics. Blood Cells Mol. Dis. 29, 439 – 443
dc.identifier.citedreferenceRosmorduc, O., Wendum, D., Arrivé, L., Elnaggar, A., Ennibi, K., Hannoun, L., Charlotte, F., Grangé, J. D., and Poupon, R. ( 2008 ) Phenotypic expression of ferroportin disease in a family with the N144H mutation. Gastroenterol. Clin. Biol. 32, 321 – 327
dc.identifier.citedreferenceAden, K. E., Wallace, D. F., Dixon, J. L., Summerville, L., Searle, J. W., Anderson, G. J., Ramm, G. A., Powell, L. W., and Subramaniam, V. N. ( 2003 ) A novel mutation in ferroportinl is associated with haemochromatosis in a Solomon Islands patient. Gut 52, 1215 – 1217
dc.identifier.citedreferenceSham, R. L., Phatak, P. D., West, C., Lee, P., Andrews, C., and Beutler, E. ( 2005 ) Autosomal dominant hereditary hemochromatosis associated with a novel ferroportin mutation and unique clinical features. Blood Cells Mol. Dis. 34, 157 – 161
dc.identifier.citedreferenceSham, R. L., Phatak, P. D., Nemeth, E., and Ganz, T. ( 2009 ) Hereditary hemochromatosis due to resistance to hepcidin: high hepcidin concentrations in a family with C326S ferroportin mutation. Blood 114, 493 – 494
dc.identifier.citedreferenceFeder, J. N., Gnirke, A., Thomas, W., Tsuchihashi, Z., Ruddy, D. A., Basava, A., Dormishian, F., Domingo, R., Jr., Ellis, M. G., Fullan, A., Hinton, L. M., Jones, N. L., Kimmel, B. E., Kronmal, G. S., Lauer, P., Lee, V. K., Loeb, D. B., Mapa, F. A., McClelland, E., Meyer, N. C., Mintier, G. A., Moeller, N., Moore, T., Morikang, E., Prass, C. E., Quintana, L., Starnes, S. M., Schatzman, R. C., Brunke, K. J., Drayna, D. T., Risch, N. J., Bacon, B. R., and Wolff, R. K. ( 1996 ) A novel MHC class I-like gene is mutated in patients with hereditary haemochro-matosis. Nat. Genet. 13, 399 – 408
dc.identifier.citedreferencePowell, L. W., Seckington, R. C., and Deugnier, Y. ( 2016 ) Haemochromatosis. Lancet 388, 706 – 716
dc.identifier.citedreferenceKawabata, H., Yang, R., Hirama, T., Vuong, P. T., Kawano, S., Gombart, A. F., and Koeffler, H. P. ( 1999 ) Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J. Biol. Chem. 274, 20826 – 20832
dc.identifier.citedreferencePietrangelo, A., Caleffi, A., and Corradini, E. ( 2011 ) Non-HFE hepatic iron overload. Semin. Liver Dis. 31, 302 – 318
dc.identifier.citedreferenceAbboud, S., and Haile, D. J. ( 2000 ) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906 – 19912
dc.identifier.citedreferenceDonovan, A., Lima, C. A., Pinkus, J. L., Pinkus, G. S., Zon, L. I., Robine, S., and Andrews, N. C. ( 2005 ) The iron exporter ferroportin/Slc40al is essential for iron homeostasis. Cell Metab. 1, 191 – 200
dc.identifier.citedreferenceMcKie, A T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., Miret, S., Bomford, A., Peters, T. J., Farzaneh, F., Hediger, M. A., Hentze, M. W., and Simpson, R. J. ( 2000 ) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299 – 309
dc.identifier.citedreferenceNemeth, E., Tuttle, M. S., Powelson, J., Vaughn, M. B., Donovan, A., Ward, D. M., Ganz, T., and Kaplan, J. ( 2004 ) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090 – 2093
dc.identifier.citedreferenceQiao, B., Sugianto, P., Fung, E., Del-Castillo-Rueda, A., Moran-Jimenez, M. J., Ganz, T., and Nemeth, E. ( 2012 ) Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 15, 918 – 924
dc.identifier.citedreferencePietrangelo, A. ( 2017 ) Ferroportin disease: pathogenesis, diagnosis and treatment Haematologica 102, 1972 – 1984
dc.identifier.citedreferenceMcKie, A. T., and Barlow, D. J. ( 2004 ) The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1). Pflugers Arch. 447, 801 – 806
dc.identifier.citedreferenceMadejczyk, M. S., and Ballatori, N. ( 2012 ) The iron transporter ferroportin can also function as a manganese exporter. Biochim. Biophys. Acta 1818, 651 – 657
dc.identifier.citedreferenceMitchell, C. J., Shawki, A., Ganz, T., Nemeth, E., and Mackenzie, B. ( 2014 ) Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Am. J. Physiol. Cell Physiol. 306, C450 – C459
dc.identifier.citedreferenceYin, Z., Jiang, H., Lee, E. S., Ni, M., Erikson, K. M., Milatovic, D., Bowman, A. B., and Aschner, M. ( 2010 ) Ferroportin is a manganese- responsive protein that decreases manganese cytotoxicity and accumulation. J. Neurochem. 112, 1190 – 1198
dc.identifier.citedreferenceLi, X., Xie J., Lu, L., Zhang, L., Zou, Y., Wang, Q., Luo, X., and Li, S. ( 2013 ) Kinetics of manganese transport and gene expressions of manganese transport carriers in Caco-2 cell monolayers. Biometals 26, 941 – 953
dc.identifier.citedreferenceHorning, K J., Caito, S.W., Tipps, K G., Bowman, A B., and Aschner, M. ( 2015 ) Manganese is essential for neuronal Health. Annu. Rev. Nutr. 35, 71 – 108
dc.identifier.citedreferenceMilatovic, D., Zaja-Milatovic, S., Gupta, R. C., Yu, Y., and Aschner, M. ( 2009 ) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol. Appl. Pharmacol. 240, 219 – 225
dc.identifier.citedreferenceStanwood, G D., Leitch, D. B., Savchenko, V., Wu, J., Fitsanakis, V. A., Anderson, D. J., Stankowski, J. N., Aschner, M., and McLaughlin, B. ( 2009 ) Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. J. Neurochem. 110, 378 – 389
dc.identifier.citedreferenceSeo, Y. A., and Kelleher, S. L. ( 2010 ) Functional analysis of two single nucleotide polymorphisms in SLC30A2 (ZnT2): implications for mammary gland function and breast disease in women. Physiol. Genomics 42A, 219 – 227
dc.identifier.citedreferenceSeo, Y. A., Lopez, V., and Kelleher, S. L. ( 2011 ) A histidine-rich motif mediates mitochondrial localization of ZnT2 to modulate mitochondrial function. Am. J. Physiol. Cell Physiol. 300, C1479 – C1489
dc.identifier.citedreferenceChoi, E. K., Nguyen, T. T., Gupta, N., Iwase, S., and Seo, Y. A. ( 2018 ) Functional analysis of SLC39A8 mutations and their implications for manganese deficiency and mitochondrial disorders. Sci. Rep. 8, 3163
dc.identifier.citedreferenceDunn, KW., Kamocka, M.M., and McDonald, J. H. ( 2011 ) Apractical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723 – C742
dc.identifier.citedreferenceSeo, Y. A., Li, Y., and Wessling-Resnick, M. ( 2013 ) Iron depletion increases manganese uptake and potentiates apoptosis through ER stress. Neurotoxicology 38, 67 – 73
dc.identifier.citedreferenceSeo, Y. A., Kumara, R., Wetli, H., and Wessling-Resnick, M. ( 2016 ) Regulation of divalent metal transporter-1 by serine phosphorylation. Biochem. J. 473, 4243 – 4254
dc.identifier.citedreferenceMcCarthy, R. C., and Kosman, D. J. ( 2014 ) Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS One 9, e89003
dc.identifier.citedreferenceAschemeyer, S., Qao, B., Stefanova, D., Valore, E. V., Sek, A. G., Ruwe, T. A., Vieth, K. R., Jung, G., Casu, C., Rivella, S., Jormakka, M., Mackenzie, B., Ganz, T., and Nemeth, E. ( 2018 ) Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood 131, 899 – 910
dc.identifier.citedreferenceSchimanski, L. M., Drakesmith, H., Merryweather-Clarke, A. T., Viprakasit, V., Edwards, J. P., Sweetland, E., Bastin, J. M., Cowley, D., Chinthammitr, Y., Robson, K J., and Townsend, A. R. ( 2005 ) In vitro functional analysis of human ferroportin (FPN) and hemochromatosis-associated FPN mutations. Blood 105, 4096 – 4102
dc.identifier.citedreferenceCallebaut, I., Joubrel, R., Pissard, S., Kannengiesser, C., Gérolami, V, Ged, C., Cadet, E., Cartault, F., Ka, C., Gourlaouen, L, Gourhant, L., Oudin, C., Goossens, M., Grandchamp, B., De Verneuil, H., Rochette, J., Férec, C., and Le Gac, G. ( 2014 ) Comprehensive functional annotation of 18 missense mutations found in suspected hemochromatosis type 4 patients. Hum. Mol. Genet. 23, 4479 – 4490
dc.identifier.citedreferenceDétivaud, L., Island, M. L., Jouanolle, A M., Ropert, M., Bardoujacquet, E., Le Lan, C., Mosser, A., Leroyer, P., Deugnier, Y., David, V, Brissot, P., and Loréal, O. ( 2013 ) Ferroportin diseases: functional studies, a link between genetic and clinical phenotype. Hum. Mutat. 34, 1529 – 1536
dc.identifier.citedreferenceLe Gac, G, Ka, C., Joubrel, R., Gourlaouen, I., Lehn, P., Mornon J. P., Férec, G., and Callebaut, I. ( 2013 ) Structure-function analysis of the human ferroportin iron exporter (SLC40A1): effect of hemochromatosis type 4 disease mutations and identification of critical residues. Hum. Mutat. 34, 1371 – 1380
dc.identifier.citedreferenceFernandes, A., Preza, G. G., Phung, Y., De Domenico, I., Kaplan, J., Ganz, T., and Nemeth, E. ( 2009 ) The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood 114, 437 – 443
dc.identifier.citedreferenceWallace, D. F., Harris, J. M., and Subramaniam, V. N. ( 2010 ) Functional analysis and theoretical modeling of ferroportin reveals clustering of mutations according to phenotype. Am. J. Physiol. Cell Physiol. 298, C75 – C84
dc.identifier.citedreferenceGonçalves, A. S., Muzeau, F., Blaybel, R., Hetet, G., Driss, F., Delaby, C., Canonne-Hergaux, F., and Beaumont, C. ( 2006 ) Wild-type and mutant ferroportins do not form oligomers in transfected cells. Biochem. J. 396, 265 – 275
dc.identifier.citedreferenceMukhopadhyay, S., Bachert, C., Smith, D. R., and Linstedt, A D. ( 2010 ) Manganese-induced trafficking and turnover of the cis-Golgi glycoprotein GPP130. Mol. Biol. Cell 21, 1282 – 1292
dc.identifier.citedreferenceBiedler, J. L., Helson, L., and Spengler, B. A. ( 1973 ) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 33, 2643 – 2652
dc.identifier.citedreferenceWu, Z., Zhu, Y., Cao, X., Sun, S., and Zhao, B. ( 2014 ) Mitochondrial toxic effects of Aβ through mitofusins in the early pathogenesis of Alzheimer’s disease. Mol. Neurobiol. 50, 986 – 996
dc.identifier.citedreferenceZhu, Y., Hoell, P., Ahlemeyer, B., Sure, U., Bertalanffy, H., and Krieglstein, J. ( 2007 ) Implication of PTEN in production of reactive oxygen species and neuronal death in in vitro models of stroke and neuronal death in in vitro models of stroke and Parkinson’s disease. Neurochem. Int. 50, 507 – 516
dc.identifier.citedreferenceLeyva-Illades, D., Chen, P., Zogzas, C. E., Hutchens, S., Mercado J. M., Swaim, C. D., Morrisett, R. A., Bowman, A. B., Aschner, M., and Mukhopadhyay, S. ( 2014 ) SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. J. Neurosa. 34, 14079 ’ 14095
dc.identifier.citedreferenceNishito, Y., Tsuji, N., Fujishiro, H., Takeda, T. A., Yamazaki, T., Teranishi, F., Okazaki, F., Matsunaga, A., Tuschl, K., Rao, R, Kono, S., Miyajima, H., Narita, H., Himeno, S., and Kambe, T. ( 2016 ) Direct comparison of manganese detoxification/efflux proteins and molecular characterization of ZnT10 protein as a manganese transporter. J. Biol. Chem. 291, 14773 – 14787
dc.identifier.citedreferenceLi, J., Ma, Z., Shi, M., Malty, R. H., Aoki, H., Minie, Z., Phanse, S., Jin, K., Wall, D. P., Zhang, Z., Urban, A E., Hallmayer, J., Babu, M., and Snyder, M. ( 2015 ) Identification of human neuronal protein complexes reveals biochemical activities and convergent mechanisms of action in autism spectrum disorders. Cell Syst. 1, 361 – 374
dc.identifier.citedreferenceDe Domenico, I., Ward, D. M., Nemeth, E., Vaughn, M. B., Musci, G., Ganz, T., and Kaplan, J. ( 2005 ) The molecular basis of ferroportin-linked hemochromatosis. Proc. Natl. Acad. Sci. USA 102, 8955 – 8960
dc.identifier.citedreferenceMcDonald, C. J., Wallace, D. F., Ostini, L., Bell, S. J., Demediuk, B., and Subramaniam, V. N. ( 2011 ) G80S-linked ferroportin disease: classical ferroportin disease in an Asian family and reclassification of the mutant as iron transport defective. J. Hepatol. 54, 538 – 544
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.