Show simple item record

Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction

dc.contributor.authorSmoyer, William E.
dc.contributor.authorRansom, Richard F.
dc.date.accessioned2020-03-17T18:27:09Z
dc.date.available2020-03-17T18:27:09Z
dc.date.issued2002-03
dc.identifier.citationSmoyer, William E.; Ransom, Richard F. (2002). "Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction." The FASEB Journal 16(3): 315-326.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154256
dc.description.abstractNephrotic syndrome (NS) is characterized by structural changes in the actin‐rich foot processes of glomerular podocytes. We previously identified high concentrations of the small heat shock protein hsp27 within podocytes as well as increased glomerular accumulation and phosphorylation of hsp27 in puromycin aminonucleoside (PAN) ‐induced experimental NS. Here we analyzed murine podocytes stably transfected with hsp27 sense, antisense, and vector control constructs using a newly developed in vitro PAN model system. Cell morphology and the microfilament structure of untreated sense and antisense transfectants were altered compared with controls. Vector cell survival, polymerized actin content, cell area, and hsp27 content increased after 1.25 μg/ml PAN treatment and decreased after 5.0 μg/ml treatment. In contrast, sense cells were unaffected by 1.25 μg/ml PAN treatment whereas antisense cells showed decreases or no changes in all parameters. Treatment of sense cells with 5.0 μ g/ml PAN resulted in increased cell survival and cell area whereas antisense cells underwent significant decreases in all parameters. Hsp27 provided dramatic protection against PAN‐induced microfilament disruption in sense > vector > antisense cells. We conclude that hsp27 is able to regulate both the morphological and actin cytoskeletal response of podocytes in an in vitro model of podocyte injury.—Smoyer, W. E., Ransom, R. F. Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction. FASEB J. 16, 315–326 (2002)
dc.publisherMarcel Dekker
dc.publisherWiley Periodicals, Inc.
dc.subject.othernephrotic syndrome
dc.subject.otherpuromycin aminonucleoside
dc.subject.otherstress fibers
dc.subject.otheractin
dc.titleHsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154256/1/fsb2fj010681com.pdf
dc.identifier.doi10.1096/fj.01-0681com
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceFishman, J. A., and Karnovsky, M. J. ( 1985 ) Effects of the aminonucleoside ofpuromycin on glomerular epithelial cells in vitro. Am. J. Pathol. 118, 398 – 407
dc.identifier.citedreferenceRyan, G. P., and Karnovsky, M. J. ( 1975 ) An ultrastructural study of the mechanisms of proteinuria in aminonucleoside nephro-sis. Kidney Int. 8, 219 – 232
dc.identifier.citedreferenceSchneider, G. B., Hamano, H., and Cooper, L. F. ( 1998 ) In vivo evaluation of hsp27 as an inhibitor of actin polymerization: hsp27 limits actin stress fiber and focal adhesion formation after heat shock. J. Cell. Physiol. 177, 575 – 584
dc.identifier.citedreferenceLavoie, J. N., Lambert, H., Hickey, E., Weber, L. A., and Landry, J. ( 1995 ) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure ofheat shock protein 27. Mol. Cell. Biol. 15, 505 – 516
dc.identifier.citedreferenceMundel, P., Reiser, J., Zuniga, A., Borja, M., Pavenstadt, H., Davidson, G., Kriz, W., and Zeller, R. ( 1997 ) Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp. Cell Res. 236, 248 – 258
dc.identifier.citedreferenceHickey, E., Brandon, S. E., Potter, R., Stein, G., Stein, J., and Weber, L. A. ( 1986 ) Sequence and organization of genes encoding the human 27 kDa heat shock protein. Nucleic Acids Res. 14, 4127 – 4145
dc.identifier.citedreferenceWu, W., and Welsh, M. J. ( 1996 ) Expression of the 25-kDa heat-shock protein (HSP27) correlates with resistance to the toxicity of cadmium chloride, mercuric chloride, cis-plati-num(II)-diamine dichloride, or sodium arsenite in mouse embryonic stem cells transfected with sense or antisense HSP27 cDNA. Toxicol. Appl. Pharmacol. 141, 330 – 339
dc.identifier.citedreferenceShelden, E. ( 1999 ) Major role for active extension in the formation of processes by ras-transformed fibroblasts. Cell Motil. Cytoskel. 42, 12 – 26
dc.identifier.citedreferenceSinghal, P. C., Franki, F., Gibbons, N., and Hays, R. M. ( 1992 ) Effects of angiotensin II and arginine vasopressin on F-actin content of cultured mesangial cells. J. Am. Soc. Nephrol. 3, 80 – 87
dc.identifier.citedreferenceSmith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. ( 1985 ) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76 – 85
dc.identifier.citedreferenceStokoe, D., Engel, K., Campbell, D. G., Cohen, P., and Gaestel, M. ( 1992 ) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett. 313, 317 – 313
dc.identifier.citedreferenceVernier, R. L., Papermaster, B. W., and Good, R. A. ( 1958 ) Aminonucleoside nephrosis. I. Electron microscopic study of the renal lesion in rats. J. Exp. Med. 109, 115 – 126
dc.identifier.citedreferenceReiser, J., Pixley, F. J., Hug, A., Kriz, W., Smoyer, W. E., Stanley, E. R., and Mundel, P. ( 2000 ) Regulation of mouse podocyte process dynamics by protein tyrosine kinases. Kidney Int. 57, 2035 – 2042
dc.identifier.citedreferenceHara, M., Yanagihara, T., Takada, T., Itoh, M., Matsuno, M., Yamamoto, T., and Kihara, I. ( 1998 ) Urinary excretion of podocytes reflects disease activity in children with glomerulone-phritis. Am. J. Nephrol. 18, 35 – 41
dc.identifier.citedreferenceInokuchi, S., Shirato, I., Kobayashi, N., Koide, H., Tomino, Y., and Sakai, T. ( 1996 ) Re-evaluation of foot process effacement in acute puromycin aminonucleoside nephrosis. Kidney Int. 50, 1278 – 1287
dc.identifier.citedreferenceNakamura, T., Ushiyama, C., Suzuki, S., Hara, M., Shimada, N., Ebihara, I., and Koide, H. ( 2000 ) The urinary as a marker for the differential diagnosis of idiopathic focal glomerulosclerosis and minimal-change nephrotic syndrome. Am. J. Nephrol. 20, 175 – 179
dc.identifier.citedreferenceBenndorf, R., Hayess, K., Ryazantsev, S., Wieske, M., Behlke, J., and Lutsch, G. ( 1994 ) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J. Biol. Chem. 269, 20780 – 20784
dc.identifier.citedreferenceHuot, J., Houle, F., Spitz, D. R., and Landry, J. ( 1996 ) HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res. 56, 273 – 279
dc.identifier.citedreferenceLavoie, J. N., Gingras-Breton, G., Tanguay, R. M., and Landry, J. ( 1993 ) Induction of Chinese hamster hsp27 gene expression in mouse cells confers resistance to heat shock: hsp27 stabilization of the microfilament organization. J. Biol. Chem. 268, 3420 – 3429
dc.identifier.citedreferenceLambert, H., Charette, S. J., Bernier, A. F., Guimond, A., and Landry, J. ( 1999 ) HSP27 multimerization mediated by phospho-rylation-sensitive intermolecular interactions at the amino terminus. J. Biol. Chem. 274, 9378 – 9385
dc.identifier.citedreferenceKnauf, U., Jakob, U., Engel, K., Buchner, J., and Gaestel, M. ( 1994 ) Stress- and mitogen-induced phosphorylation of the small heat shock protein Hsp25 by MAPKAP kinase 2 is not essential for chaperone properties and cellular thermoresis-tance. EMBO J. 13, 54 – 60
dc.identifier.citedreferenceEhrnsperger, M., Graber, S., Gaestel, M., and Buchner, J. ( 1997 ) Binding of nonnative protein to HSP25 during heat shock creates a reservoir of folding intermediates for reaction. EMBO J. 16, 221 – 229
dc.identifier.citedreferenceGarrido, C., Gurbuxani, S., Ravagnan, L., and Kroemer, G. ( 2001 ) Heat shock proteins: endogenous modulators ofapopto-tic cell death. Biochem. Biophys. Res. Commun. 286, 433 – 442
dc.identifier.citedreferenceFarquhar, M. G., Vernier, R. L., and Good, R. A. ( 1957 ) An electron microscopic study of the glomerulus in nephrosis, glomerulonephritis and lupus erythematosus. J. Exp. Med. 106, 649 – 660
dc.identifier.citedreferenceCaulfield, J. P., Reid, J. J., and Farquhar, M. G. ( 1976 ) Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Lab. Invest. 34, 43 – 59
dc.identifier.citedreferenceSmoyer, W. E., and Mundel, P. ( 1998 ) Regulation of podocyte structure during the development of nephrotic syndrome. J Mol. Meed. 76, 172 – 183
dc.identifier.citedreferenceGlassock, R. J. ( 1988 ) Pathogenesis of the nephrotic syndrome. In The Nephrotic Syndrome ( Cameron, J. S., and Glassock, R. J., eds) pp. 163 – 192, Marcel Dekker, New York
dc.identifier.citedreferenceIto, K., Ger, Y. C., and Kawamura, S. ( 1986 ) Actin filament alterations in glomerular epithelial cells of adriamycin-induced nephrotic rats. Acta Pathol. Jpn. 36, 253 – 260
dc.identifier.citedreferenceLachapelle, M., and Bendayan, M. ( 1991 ) Contractile proteins in podocytes: Immunochemical localization of actin and alphaactinin in normal and nephrotic rat kidneys. Virchows Arch. B Cell. Pathol. 60, 105 – 111
dc.identifier.citedreferenceWhiteside, C. I., Cameron, R., Munk, S., and Levy, J. ( 1993 ) Podocytic cytoskeletal disaggregation and basement-membrane detachment in puromycin aminonucleoside nephrosis. Am. J. Pathol. 142, 1641 – 1653
dc.identifier.citedreferenceAndrews, P. M., and Bates, S. B. ( 1984 ) Filamentous actin bundles in the kidney. Anat. Rec. 210, 1 – 9
dc.identifier.citedreferenceVasmant, D., Maurice, M., and Feldmann, G. ( 1984 ) Cytoskel-etal ultrastructure ofpodocytes and glomerular endothelial cells in man and in the rat. Anat. Rec. 210, 17 – 24
dc.identifier.citedreferenceSmoyer, W. E., Gupta, A., Mundel, P., Ballew, J. D., and Welsh, M. J. ( 1996 ) Altered expression of glomerular heat shock protein 27 in experimental nephrotic syndrome. J. Clin. Invest. 97, 2697 – 2704
dc.identifier.citedreferenceCiocca, D. R., Oesterreich, S., Chamness, G. C., McGuire, W. L., and Fuqua, S. A. W. ( 1993 ) Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J. Natl. Cancer Inst. 85, 1558 – 1570
dc.identifier.citedreferenceJakob, U., Gaestel, M., Engel, K., and Buchner, J. ( 1993 ) Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517 – 1520
dc.identifier.citedreferenceLavoie, J., Hickey, E., Weber, L. A., and Landry, J. ( 1993 ) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem. 268, 24210 – 24214
dc.identifier.citedreferenceMehlen, P., Preville, X., Chareyron, P., Briolay, J., Klemenz, R., and Arrigo, A. P. ( 1995 ) Constitutive expression of human hsp27, Drosophila hsp27 or human αB-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J. Immunol. 154, 363 – 374
dc.identifier.citedreferenceHuot, J., Roy, G., Lambert, H., Chretien, P., and Landry, J. ( 1991 ) Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res. 51, 5245 – 5252
dc.identifier.citedreferenceLandry, J., Chretien, P., Lambert, H., Hickey, E., and Weber, L. A. ( 1989 ) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol. 109, 7 – 15
dc.identifier.citedreferenceArrigo, A. P., and Landry, J. ( 1994 ) Expression and function of the low-molecular-weight heat shock proteins. In The Biology of Heat Shock Proteins and Molecular Chaperones ( Morimoto, R. I., Tissieres, A., and Georgopoulos, C., eds) pp. 335 – 373, Cold Spring Harbor Laboratory Press, Plainview, New York
dc.identifier.citedreferenceMehlen, P., Schulze-Osthoff, K., and Arrigo, A. P. ( 1996 ) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J. Biol. Chem. 271, 16510 – 16514
dc.identifier.citedreferenceMiron, T., Wilchek, M., and Geiger, B. ( 1988 ) Characterization of an inhibitor of actin polymerization in vinculin-rich fraction of turkey gizzard smooth muscle. Eur. J. Biochem. 178, 543 – 553
dc.identifier.citedreferenceMiron, T., Wilchek, M., and Geiger, B. ( 1991 ) A 25 kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J. Cell Biol. 114, 255 – 261
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.