Complementâ induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction
dc.contributor.author | Fattahi, Fatemeh | |
dc.contributor.author | Kalbitz, Miriam | |
dc.contributor.author | Malan, Elizabeth A. | |
dc.contributor.author | Abe, Elizabeth | |
dc.contributor.author | Jajou, Lawrence | |
dc.contributor.author | Huber‐lang, Markus S. | |
dc.contributor.author | Bosmann, Markus | |
dc.contributor.author | Russell, Mark W. | |
dc.contributor.author | Zetoune, Firas S. | |
dc.contributor.author | Ward, Peter A. | |
dc.date.accessioned | 2020-03-17T18:27:18Z | |
dc.date.available | 2020-03-17T18:27:18Z | |
dc.date.issued | 2017-09 | |
dc.identifier.citation | Fattahi, Fatemeh; Kalbitz, Miriam; Malan, Elizabeth A.; Abe, Elizabeth; Jajou, Lawrence; Huber‐lang, Markus S. ; Bosmann, Markus; Russell, Mark W.; Zetoune, Firas S.; Ward, Peter A. (2017). "Complementâ induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction." The FASEB Journal 31(9): 4129-4139. | |
dc.identifier.issn | 0892-6638 | |
dc.identifier.issn | 1530-6860 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/154261 | |
dc.description.abstract | Polymicrobial sepsis in mice causes myocardial dysfunction after generation of the complement anaphylatoxin, complement component 5a (C5a). C5a interacts with its receptors on cardiomyocytes (CMs), resulting in redox imbalance and cardiac dysfunction that can be functionally measured and quantitated using Doppler echocardiography. In this report we have evaluated activation of MAPKs and Akt in CMs exposed to C5a in vitro and after cecal ligation and puncture (CLP) in vivo. In both cases, C5a in vitro caused activation (phosphorylation) of MAPKs and Akt in CMs, which required availability of both C5a receptors. Using immunofluorescence technology, activation of MAPKs and Akt occurred in left ventricular (LV) CMs, requiring both C5a receptors, C5aR1 and â 2. Use of a waterâ soluble p38 inhibitor curtailed activation in vivo of MAPKs and Akt in LV CMs as well as the appearance of cytokines and histones in plasma from CLP mice. When mouse macrophages were exposed in vitro to LPS, activation of MAPKs and Akt also occurred. The copresence of the p38 inhibitor blocked these activation responses. Finally, the presence of the p38 inhibitor in CLP mice reduced the development of cardiac dysfunction. These data suggest that polymicrobial sepsis causes cardiac dysfunction that appears to be linked to activation of MAPKs and Akt in heart.â Fattahi, F., Kalbitz, M., Malan, E. A., Abe, E., Jajou, L., Huberâ Lang, M. S., Bosmann, M., Russell, M. W., Zetoune, F. S., Ward, P. A. Complementâ induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. FASEB J. 31, 4129â 4139 (2017). www.fasebj.orgâ Fattahi, Fatemeh, Kalbitz, Miriam, Malan, Elizabeth A., Abe, Elizabeth, Jajou, Lawrence, Huberâ Lang, Markus S., Bosmann, Markus, Russell, Mark W., Zetoune, Firas S., Ward, Peter A., Complementâ induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. FASEB J. 31, 4129â 4139 (2017) | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | cardiomyocyte | |
dc.subject.other | C5a receptor | |
dc.subject.other | CLP | |
dc.title | Complementâ induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154261/1/fsb2fj201700140r.pdf | |
dc.identifier.doi | 10.1096/fj.201700140R | |
dc.identifier.source | The FASEB Journal | |
dc.identifier.citedreference | Rittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huberâ Lang, M., Mackay, C.R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Köhl, J., Gerard, C., Sarma, J. V., and Ward, P. A. ( 2008 ) Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551 â 557 | |
dc.identifier.citedreference | Grailer, J. J., Canning, B. A., Kalbitz, M., Haggadone, M. D., Dhond, R. M., Andjelkovic, A. V., Zetoune, F. S., and Ward, P. A. ( 2014 ) Critical role for the NLRP3 inflammasome during acute lung injury. J. Immunol. 192, 5974 â 5983 | |
dc.identifier.citedreference | Fattahi, F., Grailer, J. J., Lu, H., Dick, R. S., Parlett, M., Zetoune, F. S., Nuñez, G., and Ward, P. A. ( 2017 ) Selective biological responses of phagocytes and lungs to purified histones. J. Innate Immun. 9, 300 â 317 | |
dc.identifier.citedreference | Bosmann, M., Grailer, J. J., Ruemmler, R., Russkamp, N. F., Zetoune, F. S., Sarma, J. V., Standiford, T. J., and Ward, P. A. ( 2013 ) Extracellular histones are essential effectors of C5aRâ and C5L2â mediated tissue damage and inflammation in acute lung injury. FASEB J. 27, 5010 â 5021 | |
dc.identifier.citedreference | Huberâ Lang, M., Sarma, V.J., Lu, K. T., McGuire, S. R., Padgaonkar, V. A., Guo, R. F., Younkin, E. M., Kunkel, R. G., Ding, J., Erickson, R., Curnutte, J. T., and Ward, P. A. ( 2001 ) Role of C5a in multiorgan failure during sepsis. J. Immunol. 166, 1193 â 1199 | |
dc.identifier.citedreference | Bell, J. R., Eaton, P., and Shattock, M.J. ( 2008 ) Role of p38â mitogenâ activated protein kinase in ischaemic preconditioning in rat heart. Clin. Exp. Pharmacol. Physiol. 35, 126 â 134 | |
dc.identifier.citedreference | Bosmann, M., Patel, V. R., Russkamp, N. F., Pache, F., Zetoune, F. S., Sarma J.V., and Ward, P. A. ( 2011 ) MyD88â dependent production of ILâ 17F is modulated by the anaphylatoxin C5a via the Akt signaling pathway. FASEB J. 25, 4222 â 4232 | |
dc.identifier.citedreference | Bosmann, M., Sarma, J. V., Atefi, G., Zetoune, F. S., and Ward, P. A. ( 2012 ) Evidence for antiâ inflammatory effects of C5a on the innate ILâ 17A/ILâ 23 axis. FASEB J. 26, 1640 â 1651 | |
dc.identifier.citedreference | Wrann, C. D., Tabriz, N. A., Barkhausen, T., Klos, A., van Griensven, M., Pape, H. C., Kendoff, D. O., Guo, R., Ward, P. A., Krettek, C., and Riedemann, N. C. ( 2007 ) The phosphatidylinositol 3â kinase signaling pathway exerts protective effects during sepsis by controlling C5aâ mediated activation of innate immune functions. J. Immunol. 178, 5940 â 5948 | |
dc.identifier.citedreference | Riedemann, N. C., Guo, R. F., Hollmann, T. J., Gao, H., Neff, T.A., Reuben, J. S., Speyer, C.L., Sarma, J. V., Wetsel, R. A., Zetoune, F.S., and Ward, P. A. ( 2004 ) Regulatory role of C5a in LPSâ induced ILâ 6 production by neutrophils during sepsis. FASEB J. 18, 370 â 372 | |
dc.identifier.citedreference | Chen, N.J., Mirtsos, C., Suh, D., Lu, Y. C., Lin, W.J., McKerlie, C., Lee, T., Baribault, H., Tian, H., and Yeh, W. C. ( 2007 ) C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203 â 207 | |
dc.identifier.citedreference | Hsu, W. C., Yang, F. C., Lin, C. H., Hsieh, S. L., and Chen, N.J. ( 2014 ) C5L2 is required for C5aâ triggered receptor internalization and ERK signaling. Cell. Signal. 26, 1409 â 1419 | |
dc.identifier.citedreference | Benâ Levy, R., Hooper, S., Wilson, R., Paterson, H.F., and Marshall, C. J. ( 1998 ) Nuclear export of the stressâ activated protein kinase p38 mediated by its substrate MAPKAP kinaseâ 2. Curr. Biol. 8, 1049 â 1057 | |
dc.identifier.citedreference | Court, N. W., dos Remedios, C. G., Cordell, J., and Bogoyevitch, M. A. ( 2002 ) Cardiac expression and subcellular localization of the p38 mitogenâ activated protein kinase member, stressâ activated protein kinaseâ 3 (SAPK3). J. Mol. Cell. Cardiol. 34, 413 â 426 | |
dc.identifier.citedreference | Rubinfeld, H., Hanoch, T., and Seger, R. ( 1999 ) Identification of a cytoplasmicâ retention sequence in ERK2. J. Biol. Chem. 274, 30349 â 30352 | |
dc.identifier.citedreference | Zheng, C. F., and Guan, K. L. ( 1994 ) Cytoplasmic localization of the mitogenâ activated protein kinase activator MEK. J. Biol. Chem. 269, 19947 â 19952 | |
dc.identifier.citedreference | Asaduzzaman, M., Wang, Y., and Thorlacius, H. ( 2008 ) Critical role of p38 mitogenâ activated protein kinase signaling in septic lung injury. Crit. Care Med. 36, 482 â 488 | |
dc.identifier.citedreference | Behr, T. M., Nerurkar, S. S., Nelson, A. H., Coatney, R. W., Woods, T. N., Sulpizio, A., Chandra, S., Brooks, D. P., Kumar, S., Lee, J. C., Ohlstein, E. H., Angermann, C. E., Adams, J. L., Sisko, J., Sacknerâ Bernstein, J. D., and Willette, R. N. ( 2001 ) Hypertensive endâ organ damage and premature mortality are p38 mitogenâ activated protein kinaseâ dependent in a rat model of cardiac hypertrophy and dysfunction. Circulation 104, 1292 â 1298 | |
dc.identifier.citedreference | Klintman, D., Li, X., Santen, S., Schramm, R., Jeppsson, B., and Thorlacius, H. ( 2005 ) p38 mitogenâ activated protein kinaseâ dependent chemokine production, leukocyte recruitment, and hepatocellular apoptosis in endotoxemic liver injury. Ann. Surg. 242, 830 â 838, discussion 838â 839 | |
dc.identifier.citedreference | Badger, A. M., Griswold, D. E., Kapadia, R., Blake, S., Swift, B. A., Hoffman, S.J., Stroup, G. B., Webb, E., Rieman, D.J., Gowen, M., Boehm, J.C., Adams, J.L., and Lee, J.C. ( 2000 ) Diseaseâ modifying activity of SB 242235, a selective inhibitor of p38 mitogenâ activated protein kinase, in rat adjuvantâ induced arthritis. Arthritis Rheum. 43, 175 â 183 | |
dc.identifier.citedreference | Cain, B. S., Meldrum, D. R., Dinarello, C. A., Meng, X., Joo, K. S., Banerjee, A., and Harken, A.H. ( 1999 ) Tumor necrosis factorâ alpha and interleukinâ 1beta synergistically depress human myocardial function. Crit. Care Med. 27, 1309 â 1318 | |
dc.identifier.citedreference | Haudek, S. B., Spencer, E., Bryant, D. D., White, D. J., Maass, D., Horton, J. W., Chen, Z. J., and Giroir, B. P. ( 2001 ) Overexpression of cardiac Iâ kappaBalpha prevents endotoxinâ induced myocardial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 280, H962 â H968 | |
dc.identifier.citedreference | Fisher, C.J. Jr., Agosti, J. M., Opal, S. M., Lowry, S. F., Balk, R. A., Sadoff, J. C., Abraham, E., Schein, R. M., and Benjamin, E.; The Soluble TNF Receptor Sepsis Study Group. ( 1996 ) Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. N. Engl. J. Med. 334, 1697 â 1702 | |
dc.identifier.citedreference | Abraham, E., Laterre, P.F., Garbino, J., Pingleton, S., Butler, T., Dugernier, T., Margolis, B., Kudsk, K., Zimmerli, W., Anderson, P., Reynaert, M., Lew, D., Lesslauer, W., Passe, S., Cooper, P., Burdeska, A., Modi, M., Leighton, A., Salgo, M., and van der Auwera, P.; Lenercept Study Group. ( 2001 ) Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, doubleâ blind, placeboâ controlled, multicenter phase III trial with 1,342 patients. Crit. Care Med. 29, 503 â 510 | |
dc.identifier.citedreference | Pinsetta, F. R., Taft, C. A., and de Paula da Silva, C. H. ( 2014 ) Structureâ and ligandâ based drug design of novel p38â alpha MAPK inhibitors in the fight against the Alzheimerâ s disease. J Biomol Struct Dyn 32, 1047 â 1063 | |
dc.identifier.citedreference | Trunzer, K., Pavlick, A. C., Schuchter, L., Gonzalez, R., McArthur, G. A., Hutson, T. E., Moschos, S. J., Flaherty, K. T., Kim, K. B., Weber, J. S., Hersey, P., Long, G. V., Lawrence, D., Ott, P. A., Amaravadi, R. K., Lewis, K. D., Puzanov, I., Lo, R. S., Koehler, A., Kockx, M., Spleiss, O., Schellâ Steven, A., Gilbert, H. N., Cockey, L., Bollag, G., Lee, R. J., Joe, A. K., Sosman, J. A., and Ribas, A. ( 2013 ) Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J. Clin. Oncol. 31, 1767 â 1774 | |
dc.identifier.citedreference | Cattin, M. E., Muchir, A., and Bonne, G. ( 2013 ) â Stateâ ofâ theâ heartâ of cardiac laminopathies. Curr. Opin. Cardiol. 28, 297 â 304 | |
dc.identifier.citedreference | Romeroâ Bermejo, F. J., Ruizâ Bailen, M., Gilâ Cebrian, J., and Huertosâ Ranchal, M. J. ( 2011 ) Sepsisâ induced cardiomyopathy. Curr. Cardiol. Rev. 7, 163 â 183 | |
dc.identifier.citedreference | Fernandes, C. J., Jr., Akamine, N., and Knobel, E. ( 1999 ) Cardiac troponin: a new serum marker of myocardial injury in sepsis. Intensive Care Med. 25, 1165 â 1168 | |
dc.identifier.citedreference | Blanco, J., Murielâ BombÃn, A., Sagredo, V., Taboada, F., GandÃa, F., Tamayo, L., Collado, J., GarcÃaâ Labattut, A., Carriedo, D., Valledor, M., De Frutos, M., López, M.J., Caballero, A., Guerra, J., Alvarez, B., Mayo, A., and Villar, J.; Grupo de Estudios y Análisis en Cuidados Intensivos. ( 2008 ) Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Crit. Care 12, R158 | |
dc.identifier.citedreference | Ward, P. A., Guo, R. F., and Riedemann, N. C. ( 2012 ) Manipulation of the complement system for benefit in sepsis. Crit. Care Res. Pract. 2012, 427607 | |
dc.identifier.citedreference | Nakae, H., Endo, S., Inada, K., Takakuwa, T., Kasai, T., and Yoshida, M. ( 1994 ) Serum complement levels and severity of sepsis. Res. Commun. Chem. Pathol. Pharmacol. 84, 189 â 195 | |
dc.identifier.citedreference | Huberâ Lang, M.S., Sarma, J.V., McGuire, S.R., Lu, K.T., Guo, R.F., Padgaonkar, V. A., Younkin, E. M., Laudes, I. J., Riedemann, N. C., Younger, J. G., and Ward, P. A. ( 2001 ) Protective effects of antiâ C5a peptide antibodies in experimental sepsis. FASEB J. 15, 568 â 570 | |
dc.identifier.citedreference | Kalbitz, M., Fattahi, F., Herron, T. J., Grailer, J. J., Jajou, L., Lu, H., Huberâ Lang, M., Zetoune, F. S., Sarma, J. V., Day, S. M., Russell, M. W., Jalife, J., and Ward, P. A. ( 2016 ) Complement destabilizes cardiomyocyte function in vivo after polymicrobial sepsis and in vitro. J. Immunol. 197, 2353 â 2361 | |
dc.identifier.citedreference | Niederbichler, A. D., Hoesel, L. M., Westfall, M. V., Gao, H., Ipaktchi, K.R., Sun, L., Zetoune, F.S., Su, G.L., Arbabi, S., Sarma, J.V., Wang, S. C., Hemmila, M.R., and Ward, P. A. ( 2006 ) An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J. Exp. Med. 203, 53 â 61 | |
dc.identifier.citedreference | Fattahi, F., and Ward, P. A. ( 2017 ) Complement and sepsisâ induced heart dysfunction. Mol. Immunol. 84, 57 â 64 | |
dc.identifier.citedreference | Sarma, J. V., and Ward, P. A. ( 2012 ) New developments in C5a receptor signaling. Cell Health Cytoskelet. 4, 73 â 82 | |
dc.identifier.citedreference | Zetoune, F. S., Hoesel, L. M., Neiderbichler, A. D., Flierl, M. A., Rittirsch, D., Nadeau, B. A., Sarma, J. V., and Ward, P. A. ( 2007 ) Mitogenâ activated protein kinases and septic cardiomyopathy. Meeting abstract supplement A1150. FASEB J. 21, 871 | |
dc.identifier.citedreference | Johnson, G. L., and Lapadat, R. ( 2002 ) Mitogenâ activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911 â 1912 | |
dc.identifier.citedreference | Liu, X., Zhang, C.S., Lu, C., Lin, S.C., Wu, J.W., and Wang, Z.X. ( 2016 ) A conserved motif in JNK/p38â specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Nat. Commun. 7 10879 | |
dc.identifier.citedreference | Kumar S., Boehm J. and Lee J. C. ( 2003 ) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717 â 726 | |
dc.identifier.citedreference | Armstrong S. C. ( 2004 ) Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc. Res. 61, 427 â 436 | |
dc.identifier.citedreference | Liu, Y., Shepherd, E. G., and Nelin, L.D. ( 2007 ) MAPK phosphatasesâ regulating the immune response. Nat. Rev. Immunol. 7, 202 â 212 | |
dc.identifier.citedreference | Mockridge J. W., Marber, M. S., and Heads, R. J. ( 2000 ) Activation of Akt during simulated ischemia/reperfusion in cardiac myocytes. Biochem. Biophys. Res. Commun. 270, 947 â 952 | |
dc.identifier.citedreference | Cook, S. A., Sugden, P. H., and Clerk, A. ( 1999 ) Activation of câ Jun Nâ terminal kinases and p38â mitogenâ activated protein kinases in human heart failure secondary to ischaemic heart disease. J. Mol. Cell. Cardiol. 31, 1429 â 1434 | |
dc.identifier.citedreference | Haynes, M.P., Li, L., Sinha, D., Russell, K.S., Hisamoto, K., Baron, R., Collinge, M., Sessa, W. C., and Bender, J. R. ( 2003 ) Src kinase mediates phosphatidylinositol 3â kinase/Aktâ dependent rapid endothelial nitricâ oxide synthase activation by estrogen. J. Biol. Chem. 278, 2118 â 2123 | |
dc.identifier.citedreference | Toledoâ Pereyra, L. H., Lopezâ Neblina, F., Reuben, J. S., Toledo, A. H., and Ward, P. A. ( 2004 ) Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver ischemiaâ reperfusion. J. Invest. Surg. 17, 303 â 313 | |
dc.identifier.citedreference | Chen, Y., Ba, L., Huang, W., Liu, Y., Pan, H., Mingyao, E., Shi, P., Wang, Y., Li, S., Qi, H., Sun, H., and Cao, Y. ( 2017 ) Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur. J. Pharmacol. 796, 90 â 100 | |
dc.identifier.citedreference | Song, L., Yang, H., Wang, H.X., Tian, C., Liu, Y., Zeng, X.J., Gao, E., Kang, Y.M., Du, J., and Li, H.H. ( 2014 ) Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways. Apoptosis 19, 567 â 580 | |
dc.identifier.citedreference | Kato, K., Yin, H., Agata, J., Yoshida, H., Chao, L., and Chao, J. ( 2003 ) Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am. J. Physiol. Heart Circ. Physiol. 285, H1506 â H1514 | |
dc.identifier.citedreference | Sun, L., Chen, C., Jiang, B., Li, Y., Deng, Q., Sun, M., An, X., Yang, X., Yang, Y., Zhang, R., Lu, Y., Zhu, D. S., Huo, Y., Feng, G. S., Zhang, Y., and Luo J. ( 2014 ) Grb2â associated binder 1 is essential for cardioprotection against ischemia/reperfusion injury. Basic Res. Cardiol. 109, 420 | |
dc.identifier.citedreference | Lim, N.R., Thomas, C.J., Silva, L.S., Yeap, Y.Y., Yap, S., Bell, J.R., Delbridge, L.M., Bogoyevitch, M.A., Woodman, O.L., Williams, S.J., May, C. N., and Ng, D. C. ( 2013 ) Cardioprotective 3â ², 4â ²â dihydroxyflavonol attenuation of JNK and p38(MAPK) signalling involves CaMKII inhibition. Biochem. J. 456, 149 â 161 | |
dc.identifier.citedreference | Du, J., Zhang, L., Wang, Z., Yano, N., Zhao, Y.T., Wei, L., Dubieleckaâ Szczerba, P., Liu, P.Y., Zhuang, S., Qin, G., and Zhao, T. C. ( 2016 ) Exendinâ 4 induces myocardial protection through MKK3 and Aktâ 1 in infarcted hearts. Am. J. Physiol. Cell Physiol. 310, C270 â C283 | |
dc.identifier.citedreference | Höpken, U. E., Lu, B., Gerard, N. P., and Gerard, C. ( 1996 ) The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383, 86 â 89 | |
dc.identifier.citedreference | Gerard, N. P., Lu, B., Liu, P., Craig, S., Fujiwara, Y., Okinaga, S., and Gerard, C. ( 2005 ) An antiâ inflammatory function for the complement anaphylatoxin C5aâ binding protein, C5L2. J. Biol. Chem. 280, 39677 â 39680 | |
dc.identifier.citedreference | Rittirsch, D., Huberâ Lang, M.S., Flierl, M.A., and Ward, P. A. ( 2009 ) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31 â 36 | |
dc.identifier.citedreference | Kalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huberâ Lang, M., Russell, M. W., and Ward, P. A. ( 2016 ) Complementâ induced activation of the cardiac NLRP3 inflammasome in sepsis. FASEB J. 30, 3997 â 4006 | |
dc.identifier.citedreference | Kalbitz, M., Grailer J.J., Fattahi, F., Jajou, L., Herron, T.J., Campbell, K.F., Zetoune, F.S., Bosmann, M., Sarma, J.V., Huberâ Lang, M., Gebhard, F., Loaiza, R., Valdivia, H. H., Jalife, J., Russell, M. W., and Ward, P. A. ( 2015 ) Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J. 29, 2185 â 2193 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.