The noncanonical BMP signaling pathway plays an important role in club cell regeneration
dc.contributor.author | Shafiquzzaman, Md | |
dc.contributor.author | Biswas, Soma | |
dc.contributor.author | Li, Ping | |
dc.contributor.author | Mishina, Yuji | |
dc.contributor.author | Li, Baojie | |
dc.contributor.author | Liu, Huijuan | |
dc.date.accessioned | 2020-03-17T18:27:20Z | |
dc.date.available | WITHHELD_13_MONTHS | |
dc.date.available | 2020-03-17T18:27:20Z | |
dc.date.issued | 2020-03 | |
dc.identifier.citation | Shafiquzzaman, Md; Biswas, Soma; Li, Ping; Mishina, Yuji; Li, Baojie; Liu, Huijuan (2020). "The noncanonical BMP signaling pathway plays an important role in club cell regeneration." STEM CELLS 38(3): 437-450. | |
dc.identifier.issn | 1066-5099 | |
dc.identifier.issn | 1549-4918 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/154263 | |
dc.description.abstract | The bronchiole is a major site for the development of several life‐threatening disorders, including chronic obstructive pulmonary disease and lung adenocarcinomas. The bronchiolar epithelium is composed of club cells and ciliated epithelial cells, with club cells serving as progenitor cells. Presently, the identity of the cells involved in regeneration of bronchiolar epithelium and the underlying mechanisms remain incompletely understood. Here, we show that Prrx1, a homeobox transcription factor, can mark club cells in adult mice during homeostasis and regeneration. We further show that the noncanonical signaling pathway of BMPs, BMPR1A‐Tak1‐p38MAPK, plays a critical role in club cell regeneration. Ablation of Bmpr1a, Tak1, or Mapk14 (encoding p38α) in Prrx1+ club cells caused minimal effect on bronchiolar epithelium homeostasis, yet it resulted in severe defects in club cell regeneration and bronchiole repair in adult mice. We further show that this pathway supports proliferation and expansion of the regenerating club cells. Our findings thus identify a marker for club cells and reveal a critical role for the BMP noncanonical pathway in club cell regeneration.Schematic representation of our results showing the critical roles of the noncanonical signaling pathway of BMPs, (BMPR1A‐Tak1‐p38MAPK) in club cell regeneration. Naphthalene (NA) is metabolized by CYP‐2F2, which is expressed exclusively in club cells, generating cytotoxic epoxide that kills the club cells within 1.5 days after NA exposure. Under normal conditions, hyperplastic growth occurs at day 3 and the bronchiolar epithelium is restored at day 7. We show that ablation of Bmpr1a, Tak1, or Mapk14 (encoding p38α) in club cells resulted in severe defects in regeneration and bronchiole repair in adult mice. | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | club cell regeneration | |
dc.subject.other | noncanonical BMP pathway | |
dc.subject.other | club cells | |
dc.subject.other | bronchiolar epithelium | |
dc.subject.other | Prrx1 | |
dc.subject.other | Tak1‐p38MAPK | |
dc.title | The noncanonical BMP signaling pathway plays an important role in club cell regeneration | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154263/1/stem3125_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154263/2/stem3125.pdf | |
dc.identifier.doi | 10.1002/stem.3125 | |
dc.identifier.source | STEM CELLS | |
dc.identifier.citedreference | Sountoulidis A, Stavropoulos A, Giaglis S, et al. Activation of the canonical bone morphogenetic protein (BMP) pathway during lung morphogenesis and adult lung tissue repair. PLoS One. 2012; 7 ( 8 ): e41460. | |
dc.identifier.citedreference | Chung MI, Bujnis M, Barkauskas CE, Kobayashi Y, Hogan BLM. Niche‐mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. Development. 2018; 145 ( 9 ): dev163014. | |
dc.identifier.citedreference | Barnes PJ. Senescence in COPD and its comorbidities. Annu Rev Physiol. 2017; 79: 517 ‐ 539. | |
dc.identifier.citedreference | Sutherland KD, Berns A. Cell of origin of lung cancer. Mol Oncol. 2010; 4 ( 5 ): 397 ‐ 403. | |
dc.identifier.citedreference | Kawanami A, Matsushita T, Chan YY, Murakami S. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun. 2009; 386 ( 3 ): 477 ‐ 482. | |
dc.identifier.citedreference | Mishina Y, Hanks MC, Miura S, Tallquist MD, Behringer RR. Generation of Bmpr/Alk3 conditional knockout mice. Genesis. 2002; 32 ( 2 ): 69 ‐ 72. | |
dc.identifier.citedreference | Li P, Deng Q, Liu J, et al. Roles for HB‐EGF in mesenchymal stromal cell proliferation and differentiation during skeletal growth. J Bone Miner Res. 2019; 34 ( 2 ): 295 ‐ 309. | |
dc.identifier.citedreference | Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis. 2002; 33 ( 2 ): 77 ‐ 80. | |
dc.identifier.citedreference | Wu H, Wu Z, Li P, et al. Bone size and quality regulation: concerted actions of mTOR in mesenchymal stromal cells and osteoclasts. Stem Cell Rep. 2017; 8 ( 6 ): 1600 ‐ 1616. | |
dc.identifier.citedreference | Ihida‐Stansbury K, McKean DM, Gebb SA, et al. Paired‐related homeobox gene Prx1 is required for pulmonary vascular development. Circ Res. 2004; 94 ( 11 ): 1507 ‐ 1514. | |
dc.identifier.citedreference | Martin JF, Bradley A, Olson EN. The paired‐like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev. 1995; 9 ( 10 ): 1237 ‐ 1249. | |
dc.identifier.citedreference | Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretory protein‐expressing cells of the airway neuroepithelial body microenvironment include a label‐retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol. 2001; 24 ( 6 ): 671 ‐ 681. | |
dc.identifier.citedreference | Sun J, Chen H, Chen C, et al. Prenatal lung epithelial cell‐specific abrogation of Alk3‐bone morphogenetic protein signaling causes neonatal respiratory distress by disrupting distal airway formation. Am J Pathol. 2008; 172 ( 3 ): 571 ‐ 582. | |
dc.identifier.citedreference | Wu X, Zhang W, Font‐Burgada J, et al. Ubiquitin‐conjugating enzyme Ubc13 controls breast cancer metastasis through a TAK1‐p38 MAP kinase cascade. Proc Natl Acad Sci USA. 2014; 111 ( 38 ): 13870 ‐ 13875. | |
dc.identifier.citedreference | Biswas S, Li P, Wu H, et al. BMPRIA is required for osteogenic differentiation and RANKL expression in adult bone marrow mesenchymal stromal cells. Sci Rep. 2018; 8 ( 1 ): 8475. | |
dc.identifier.citedreference | Cong Q, Jia H, Biswas S, et al. p38alpha MAPK regulates lineage commitment and OPG synthesis of bone marrow stromal cells to prevent bone loss under physiological and pathological conditions. Stem Cell Rep. 2016; 6 ( 4 ): 566 ‐ 578. | |
dc.identifier.citedreference | Que J, Okubo T, Goldenring JR, et al. Multiple dose‐dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development. 2007; 134 ( 13 ): 2521 ‐ 2531. | |
dc.identifier.citedreference | Lee JH, Tammela T, Hofree M, et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell. 2017; 170 ( 6 ): 1149 ‐ 1163.e1112. | |
dc.identifier.citedreference | Rawlins EL, Clark CP, Xue Y, Hogan BLM. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development. 2009; 136 ( 22 ): 3741 ‐ 3745. | |
dc.identifier.citedreference | Mihaly SR, Ninomiya‐Tsuji J, Morioka S. TAK1 control of cell death. Cell Death Differ. 2014; 21 ( 11 ): 1667 ‐ 1676. | |
dc.identifier.citedreference | Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015; 6: 10123. | |
dc.identifier.citedreference | Oeztuerk‐Winder F, Ventura JJ. The many faces of p38 mitogen‐activated protein kinase in progenitor/stem cell differentiation. Biochem J. 2012; 445 ( 1 ): 1 ‐ 10. | |
dc.identifier.citedreference | Matsumoto T, Turesson I, Book M, Gerwins P, Claesson‐Welsh L. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF‐2‐stimulated angiogenesis. J Cell Biol. 2002; 156 ( 1 ): 149 ‐ 160. | |
dc.identifier.citedreference | Wada M, Canals D, Adada M, et al. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene. 2017; 36 ( 47 ): 6649 ‐ 6657. | |
dc.identifier.citedreference | Xing Y, Li A, Borok Z, Li C, Minoo P. NOTCH1 is required for regeneration of Clara cells during repair of airway injury. Stem Cells. 2012; 30 ( 5 ): 946 ‐ 955. | |
dc.identifier.citedreference | Androutsellis‐Theotokis A, Leker RR, Soldner F, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006; 442 ( 7104 ): 823 ‐ 826. | |
dc.identifier.citedreference | Cook BD, Evans T. BMP signaling balances murine myeloid potential through SMAD‐independent p38MAPK and NOTCH pathways. Blood. 2014; 124 ( 3 ): 393 ‐ 402. | |
dc.identifier.citedreference | Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014; 141 ( 3 ): 502 ‐ 513. | |
dc.identifier.citedreference | Hogan BL, Barkauskas CE, Chapman HA, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014; 15 ( 2 ): 123 ‐ 138. | |
dc.identifier.citedreference | Metzger RJ, Klein OD, Martin GR, Krasnow MA. The branching programme of mouse lung development. Nature. 2008; 453 ( 7196 ): 745 ‐ 750. | |
dc.identifier.citedreference | Eblaghie MC, Reedy M, Oliver T, Mishina Y, Hogan BLM. Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev Biol. 2006; 291 ( 1 ): 67 ‐ 82. | |
dc.identifier.citedreference | Rock JR, Gao X, Xue Y, Randell SH, Kong YY, Hogan BLM. Notch‐dependent differentiation of adult airway basal stem cells. Cell Stem Cell. 2011; 8 ( 6 ): 639 ‐ 648. | |
dc.identifier.citedreference | Guha A, Vasconcelos M, Cai Y, et al. Neuroepithelial body microenvironment is a niche for a distinct subset of Clara‐like precursors in the developing airways. Proc Natl Acad Sci USA. 2012; 109 ( 31 ): 12592 ‐ 12597. | |
dc.identifier.citedreference | Kumar PA, Hu Y, Yamamoto Y, et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011; 147 ( 3 ): 525 ‐ 538. | |
dc.identifier.citedreference | Rawlins EL, Okubo T, Xue Y, et al. The role of Scgb1a1+ Clara cells in the long‐term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell. 2009; 4 ( 6 ): 525 ‐ 534. | |
dc.identifier.citedreference | Reynolds SD, Hong KU, Giangreco A, et al. Conditional Clara cell ablation reveals a self‐renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol. 2000; 278 ( 6 ): L1256 ‐ L1263. | |
dc.identifier.citedreference | Tata PR, Mou H, Pardo‐Saganta A, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature. 2013; 503 ( 7475 ): 218 ‐ 223. | |
dc.identifier.citedreference | Watson JK, Rulands S, Wilkinson AC, et al. Clonal dynamics reveal two distinct populations of basal cells in slow‐turnover airway epithelium. Cell Rep. 2015; 12 ( 1 ): 90 ‐ 101. | |
dc.identifier.citedreference | Guha A, Deshpande A, Jain A, Sebastiani P, Cardoso WV. Uroplakin 3a(+) cells are a distinctive population of epithelial progenitors that contribute to airway maintenance and post‐injury repair. Cell Rep. 2017; 19 ( 2 ): 246 ‐ 254. | |
dc.identifier.citedreference | Green MD, Huang SXL, Snoeck HW. Stem cells of the respiratory system: from identification to differentiation into functional epithelium. Bioessays. 2013; 35 ( 3 ): 261 ‐ 270. | |
dc.identifier.citedreference | Kajstura J, Rota M, Hall SR, et al. Evidence for human lung stem cells. N Engl J Med. 2011; 364 ( 19 ): 1795 ‐ 1806. | |
dc.identifier.citedreference | Bellusci S, Henderson R, Winnier G, Oikawa T, Hogan BL. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (BMP‐4) plays a role in mouse embryonic lung morphogenesis. Development. 1996; 122 ( 6 ): 1693 ‐ 1702. | |
dc.identifier.citedreference | Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development. 2011; 138 ( 5 ): 971 ‐ 981. | |
dc.identifier.citedreference | Geng Y, Dong Y, Yu M, et al. Follistatin‐like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development. Proc Natl Acad Sci USA. 2011; 108 ( 17 ): 7058 ‐ 7063. | |
dc.identifier.citedreference | Li Q, Jiao J, Li H, et al. Histone arginine methylation by Prmt5 is required for lung branching morphogenesis through repression of BMP signaling. J Cell Sci. 2018; 131 ( 14 ): jcs217406. | |
dc.identifier.citedreference | Weaver M, Yingling JM, Dunn NR, Bellusci S, Hogan BL. Bmp signaling regulates proximal‐distal differentiation of endoderm in mouse lung development. Development. 1999; 126 ( 18 ): 4005 ‐ 4015. | |
dc.identifier.citedreference | Heldin CH, Miyazono K, ten Dijke P. TGF‐beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997; 390 ( 6659 ): 465 ‐ 471. | |
dc.identifier.citedreference | Chen C, Chen H, Sun J, et al. Smad1 expression and function during mouse embryonic lung branching morphogenesis. Am J Physiol Lung Cell Mol Physiol. 2005; 288 ( 6 ): L1033 ‐ L1039. | |
dc.identifier.citedreference | Xu B, Chen C, Chen H, et al. Smad1 and its target gene Wif1 coordinate BMP and Wnt signaling activities to regulate fetal lung development. Development. 2011; 138 ( 5 ): 925 ‐ 935. | |
dc.identifier.citedreference | Kua HY, Liu H, Leong WF, et al. c‐Abl promotes osteoblast expansion by differentially regulating canonical and non‐canonical BMP pathways and p16INK4a expression. Nat Cell Biol. 2012; 14 ( 7 ): 727 ‐ 737. | |
dc.identifier.citedreference | Shibuya H, Iwata H, Masuyama N, et al. Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J. 1998; 17 ( 4 ): 1019 ‐ 1028. | |
dc.identifier.citedreference | Shim JH, Greenblatt MB, Xie M, et al. TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J. 2009; 28 ( 14 ): 2028 ‐ 2041. | |
dc.identifier.citedreference | Liu Y, Martinez L, Ebine K, Abe MK. Role for mitogen‐activated protein kinase p38 alpha in lung epithelial branching morphogenesis. Dev Biol. 2008; 314 ( 1 ): 224 ‐ 235. | |
dc.identifier.citedreference | Hui L, Bakiri L, Mairhorfer A, et al. p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK‐c‐Jun pathway. Nat Genet. 2007; 39 ( 6 ): 741 ‐ 749. | |
dc.identifier.citedreference | Ventura JJ, Tenbaum S, Perdiguero E, et al. p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat Genet. 2007; 39 ( 6 ): 750 ‐ 758. | |
dc.identifier.citedreference | Myllarniemi M, Lindholm P, Ryynänen MJ, et al. Gremlin‐mediated decrease in bone morphogenetic protein signaling promotes pulmonary fibrosis. Am J Respir Crit Care Med. 2008; 177 ( 3 ): 321 ‐ 329. | |
dc.identifier.citedreference | Rosendahl A, Pardali E, Speletas M, ten Dijke P, Heldin CH, Sideras P. Activation of bone morphogenetic protein/Smad signaling in bronchial epithelial cells during airway inflammation. Am J Respir Cell Mol Biol. 2002; 27 ( 2 ): 160 ‐ 169. | |
dc.identifier.citedreference | Tadokoro T, Gao X, Hong CC, Hotten D, Hogan BLM. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development. 2016; 143 ( 5 ): 764 ‐ 773. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.