Show simple item record

Extended Cave Drip Water Time Series Captures the 2015–2016 El Niño in Northern Borneo

dc.contributor.authorEllis, Shelby A.
dc.contributor.authorCobb, Kim M.
dc.contributor.authorMoerman, Jessica W.
dc.contributor.authorPartin, Judson W.
dc.contributor.authorBennett, A. Landry
dc.contributor.authorMalang, Jenny
dc.contributor.authorGerstner, Hein
dc.contributor.authorTuen, Andrew A.
dc.date.accessioned2020-03-17T18:27:26Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:27:26Z
dc.date.issued2020-03-16
dc.identifier.citationEllis, Shelby A.; Cobb, Kim M.; Moerman, Jessica W.; Partin, Judson W.; Bennett, A. Landry; Malang, Jenny; Gerstner, Hein; Tuen, Andrew A. (2020). "Extended Cave Drip Water Time Series Captures the 2015–2016 El Niño in Northern Borneo." Geophysical Research Letters 47(5): no-no.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/154266
dc.description.abstractTime series of cave drip water oxygen isotopes (δ18O) provide site‐specific assessments of the contributions of climate and karst processes to stalagmite δ18O records employed for hydroclimate reconstructions. We present ~12‐year‐long time series of biweekly cave drip water δ18O variations from three sites as well as a daily resolved local rainfall δ18O record from Gunung Mulu National Park in northern Borneo. Drip water δ18O variations closely match rainfall δ18O variations averaged over the preceding 3–18 months. We observe coherent interannual drip water δ18O variability of ~3‰ to 5‰ related to the El Niño–Southern Oscillation (ENSO), with sustained positive rainfall and drip water δ18O anomalies observed during the 2015/2016 El Niño. Evidence of nonlinear behavior at one of three drip water monitoring sites implies a time‐varying contribution from a longer‐term reservoir. Our results suggest that well‐replicated, high‐resolution stalagmite δ18O reconstructions from Mulu could characterize past ENSO‐related variability in regional hydroclimate.Plain Language SummaryCave stalagmites allow for the reconstruction of past regional rainfall variability over the last hundreds of thousands of years with robust age control. Such reconstructions rely on the fact that differences in the isotopic composition of rainwater set by regional rainfall patterns is preserved as the rainwater travels through cave bedrock to feed the cave drip waters forming stalagmites. Long‐term monitoring of rainwater and cave drip water isotopes ground truth the climate to stalagmite relationship across modern‐day changes in regional rainfall. Twelve years of monitoring data presented in this study identify individual El Niño–Southern Oscillation events in rainfall and cave drip water isotopic composition, providing a strong foundation for stalagmite‐based climate reconstructions from this site.Key PointsThree 12‐year‐long cave drip water δ18O time series capture El Niño and La Niña events in northern BorneoEstimates of karst residence times range from 3 to 18 months, with a secondary contribution from a longer‐term reservoir at one drip siteDrip water nonstationarity implies multiple stalagmites are required to reconstruct El Niño–Southern Oscillation variability over time
dc.publisherWiley
dc.subject.othertropical karst
dc.subject.otherEl Nino
dc.subject.otheroxygen isotopes
dc.subject.othercave drip waters
dc.subject.othertropical rainfall
dc.subject.otherENSO
dc.titleExtended Cave Drip Water Time Series Captures the 2015–2016 El Niño in Northern Borneo
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154266/1/grl60264-sup-0002-2019GL086363-SI.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154266/2/grl60264_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154266/3/grl60264.pdf
dc.identifier.doi10.1029/2019GL086363
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMoerman, J. W., Cobb, K. M., Partin, J. W., Meckler, A. N., Carolin, S. A., Adkins, J. F., Lejau, S., Malang, J., Clark, B., & Tuen, A. A. ( 2014 ). Transformation of ENSO‐related rainwater to dripwater δ18O variability by vadose water mixing. Geophysical Research Letters, 41, 7907 – 7915. https://doi.org/10.1002/2014GL061696
dc.identifier.citedreferenceLeduc, G., Vidal, L., Cartapanis, O., & Bard, E. ( 2009 ). Modes of eastern equatorial Pacific thermocline variability: Implications for ENSO dynamics over the last glacial period. Paleoceanography, 24, PA3202. https://doi.org/10.1029/2008PA001701
dc.identifier.citedreferenceLiu, S., Peng, X., Chen, Q., Qin, S., Zhao, J., Feng, Y., Luo, S., & Zhou, H. ( 2018 ). The 1997–1998 El Niño event recorded by a stalagmite from central China. Quaternary International, 487, 71 – 77.
dc.identifier.citedreferenceMcDonald, J., Drysdale, R., Hill, D., Chisari, R., & Wong, H. ( 2007 ). The hydrochemical response of cave drip waters to sub‐annual and inter‐annual climate variability, Wombeyan Caves, SE Australia. Chemical Geology, 244 ( 3‐4 ), 605 – 623.
dc.identifier.citedreferenceMcGregor, H. V., Fischer, M. J., Gagan, M. K., Fink, D., Phipps, S. J., Wong, H., & Woodroffe, C. D. ( 2013 ). A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago. Nature Geoscience, 6 ( 11 ), 949 – 953.
dc.identifier.citedreferenceMeckler, A. N., Clarkson, M. O., Cobb, K. M., Sodemann, H., & Adkins, J. F. ( 2012 ). Interglacial hydroclimate in the tropical West Pacific through the Late Pleistocene. Science, 336 ( 6086 ), 1301 – 1304. https://doi.org/10.1126/science.1218340
dc.identifier.citedreferenceMedina‐Elizalde, M., Burns, S. J., Lea, D. W., Asmerom, Y., von Gunten, L., Polyak, V., Vuille, M., & Karmalkar, A. ( 2010 ). High resolution stalagmite climate record from the Yucatán Peninsula spanning the Maya terminal classic period. Earth and Planetary Science Letters, 298 ( 1‐2 ), 255 – 262.
dc.identifier.citedreferenceMickler, P. J., Banner, J. L., Stern, L., Asmerom, Y., Edwards, R. L., & Ito, E. ( 2004 ). Stable isotope variations in modern tropical speleothems: Evaluating equilibrium vs. kinetic isotope effects. Geochimica et Cosmochimica Acta, 68 ( 21 ), 4381 – 4393.
dc.identifier.citedreferenceMoerman, J. W., Cobb, K. M., Adkins, J. F., Sodemann, H., Clark, B., & Tuen, A. A. ( 2013 ). Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology. Earth and Planetary Science Letters, 369, 108 – 119.
dc.identifier.citedreferenceMuangsong, C., Cai, B., Pumijumnong, N., Hu, C., & Cheng, H. ( 2014 ). An annually laminated stalagmite record of the changes in Thailand monsoon rainfall over the past 387 years and its relationship to IOD and ENSO. Quaternary International, 349, 90 – 97.
dc.identifier.citedreferenceNott, J., Haig, J., Neil, H., & Gillieson, D. ( 2007 ). Greater frequency variability of landfalling tropical cyclones at centennial compared to seasonal and decadal scales. Earth and Planetary Science Letters, 255 ( 3‐4 ), 367 – 372.
dc.identifier.citedreferenceOrland, I. J., Burstyn, Y., Bar‐Matthews, M., Kozdon, R., Ayalon, A., Matthews, A., & Valley, J. W. ( 2014 ). Seasonal climate signals (1990–2008) in a modern Soreq Cave stalagmite as revealed by high‐resolution geochemical Analysis. Chemical Geology, 363 ( 203 ), 215.
dc.identifier.citedreferencePartin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., & Fernandez, D. P. ( 2007 ). Millennial‐scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature, 449 ( 7161 ), 452 – 455. https://doi.org/10.1038/nature06164
dc.identifier.citedreferencePartin, J. W., Cobb, K. M., Adkins, J. F., Tuen, A. A., & Clark, B. ( 2013 ). Trace metal and carbon isotopic variations in cave dripwater and stalagmite geochemistry from northern Borneo. Geochemistry, Geophysics, Geosystems, 14, 3567 – 3585. https://doi.org/10.1002/ggge.20215
dc.identifier.citedreferencePartin, J. W., Jenson, J. W., Banner, J. L., Quinn, T. M., Taylor, F. W., Sinclair, D., Hardt, B., Lander, M. A., Bell, T., Miklavic, B., Jocson, J. M., & Taborosi, D. ( 2012 ). Relationship between modern rainfall variability, cave dripwater, and stalagmite geochemistry in Guam, USA. Geochemistry, Geophysics, Geosystems, 13, Q03013. https://doi.org/10.1029/2011GC003930
dc.identifier.citedreferencePartin, J. W., Quinn, T. M., Shen, C. C., Emile‐Geay, J., Taylor, F. W., Maupin, C. R., Lin, K., Jackson, C. S., Banner, J. L., Sinclair, D. J., & Huh, C. A. ( 2013 ). Multidecadal rainfall variability in South Pacific Convergence Zone as revealed by stalagmite geochemistry. Geology, 41 ( 11 ), 1143 – 1146.
dc.identifier.citedreferenceRasmusson, E. M., & Wallace, J. M. ( 1983 ). Meteorological aspects of the El Nino/southern oscillation. Science, 222 ( 4629 ), 1195 ‐ 1202.
dc.identifier.citedreferenceRozanski, K., Araguas‐Araguas, L., & Gonfiantini, R. ( 1992 ). Relation between long‐term trends of oxygen‐18 isotope composition of precipitation and climate. Science, 258 ( 5084 ), 981 – 985. https://doi.org/10.1126/science.258.5084.981
dc.identifier.citedreferenceSinha, A., Cannariato, K. G., Stott, L. D., Li, H. C., You, C. F., Cheng, H., Edwards, R. L., & Singh, I. B. ( 2005 ). Variability of Southwest Indian summer monsoon precipitation during the Bølling‐Allerød. Geology, 33 ( 10 ), 813 – 816.
dc.identifier.citedreferenceSun, Z., Yang, Y., Zhao, J., Tian, N., & Feng, X. ( 2018 ). Potential ENSO effects on the oxygen isotope composition of modern speleothems: Observations from Jiguan Cave, central China. Journal of Hydrology, 566, 164 – 174.
dc.identifier.citedreferenceTreble, P. C., Bradley, C., Wood, A., Baker, A., Jex, C. N., Fairchild, I. J., Gagan, M. K., Cowley, J., & Azcurra, C. ( 2013 ). An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, SW Australia: Implications for speleothem paleoclimate records. Quaternary Science Reviews, 64, 90 – 103.
dc.identifier.citedreferenceTudhope, A. W., Chilcott, C. P., McCulloch, M. T., Cook, E. R., Chappell, J., Ellam, R. M., Lea, D. W., Lough, J. M., & Shimmield, G. B. ( 2001 ). Variability in the El Niño–Southern Oscillation through a glacial‐interglacial cycle. Science, 291 ( 5508 ), 1511 – 1517.
dc.identifier.citedreferenceWang, X., Auler, A. S., Edwards, R. L., Cheng, H., Ito, E., & Solheid, M. ( 2006 ). Interhemispheric anti‐phasing of rainfall during the last glacial period. Quaternary Science Reviews, 25 ( 23‐24 ), 3391 – 3403.
dc.identifier.citedreferenceWang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., & Dorale, J. A. ( 2001 ). A high‐resolution absolute‐dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294 ( 5550 ), 2345 – 2348.
dc.identifier.citedreferenceWhite, S. M., Ravelo, A. C., & Polissar, P. J. ( 2018 ). Dampened El Niño in the early and mid‐Holocene due to insolation‐forced warming/deepening of the thermocline. Geophysical Research Letters, 45, 316 – 326. https://doi.org/10.1002/2017GL075433
dc.identifier.citedreferenceZhang, H., Cheng, H., Spötl, C., Cai, Y., Sinha, A., Tan, L., Yi, L., Yan, H., Kathayat, G., Ning, Y., Li, X., Zhang, F., Zhao, J., & Edwards, R. L. ( 2018 ). A 200‐year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO. Scientific Reports, 8 ( 1 ), 1 ‐ 10.
dc.identifier.citedreferenceZhang, J., & Li, T. Y. ( 2019 ). Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong Cave, Southwest China based on 12 years’ monitoring. Journal of Hydrology, 572, 40 – 50. https://doi.org/10.1016/j.jhydrol.2019.02.052
dc.identifier.citedreferenceZhao, K., Wang, Y., Edwards, R. L., Cheng, H., Liu, D., & Kong, X. ( 2015 ). A high‐resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1200 years. Quaternary Science Reviews, 122, 250 – 257.
dc.identifier.citedreferenceAggarwal, P. K., Romatschke, U., Araguas‐Araguas, L., Belachew, D., Longstaffe, F. J., Berg, P., Schumacher, C., & Funk, A. ( 2016 ). Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nature Geoscience, 9 ( 8 ), 624.
dc.identifier.citedreferenceAkers, P. D., Brook, G. A., Railsback, L. B., Liang, F., Iannone, G., Webster, J. W., Reeder, P. P., Cheng, H., & Edwards, R. L. ( 2016 ). An extended and higher‐resolution record of climate and land use from stalagmite MC01 from Macal Chasm, Belize, revealing connections between major dry events, overall climate variability, and Maya sociopolitical changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 268 – 288.
dc.identifier.citedreferenceBaker, A., & Brunsdon, C. ( 2003 ). Non‐linearities in drip water hydrology: An example from Stump Cross Caverns, Yorkshire. Journal of Hydrology, 277 ( 3‐4 ), 151 – 163.
dc.identifier.citedreferenceBaker, A., Hartmann, A., Duan, W., Hankin, S., Comas‐Bru, L., Cuthbert, M. O., Treble, P. C., Banner, J., Genty, D., Baldini, L. M., Bartolomé, M., Moreno, A., Pérez‐Mejias, C., & Werner, M. ( 2019 ). Global analysis reveals climatic controls on the oxygen isotope composition of cave drip water. Nature Communications, 10 ( 1 ), 2984. https://doi.org/10.1038/s41467‐019‐11027‐w
dc.identifier.citedreferenceBeal, L. K., Wong, C. I., Bautista, K. K., Jenson, J. W., Banner, J. L., Lander, M. A., Gingerich, S. B., Partin, J. W., Hardt, B., & van Oort, N. H. ( 2019 ). Isotopic and geochemical assessment of the sensitivity of groundwater resources of Guam, Mariana Islands, to intra‐and inter‐annual variations in hydroclimate. Journal of Hydrology, 568, 174 – 183.
dc.identifier.citedreferenceBretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Blade, I. ( 1999 ). Effective number of degrees of freedom of a spatial field. Journal of Climate, 12 ( 1990 ), 2009.
dc.identifier.citedreferenceBurns, S. J., Matter, A., Frank, N., & Mangini, A. ( 1998 ). Speleothem‐based paleoclimate record from northern Oman. Geology, 26 ( 6 ), 499 – 502.
dc.identifier.citedreferenceCai, B., Pumijumnong, N., Tan, M., Muangsong, C., Kong, X., Jiang, X., & Nan, S. ( 2010 ). Effects of intraseasonal variation of summer monsoon rainfall on stable isotope and growth rate of a stalagmite from northwestern Thailand. Journal of Geophysical Research, 115, D21104. https://doi.org/10.1029/2009JD013378
dc.identifier.citedreferenceCai, Z., & Tian, L. ( 2016 ). Processes governing water vapor isotope composition in the Indo‐Pacific region: Convection and water vapor transport. Journal of Climate, 29 ( 23 ), 8535 – 8546.
dc.identifier.citedreferenceCarolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau, S., Malang, J., & Tuen, A. A. ( 2013 ). Varied response of western Pacific hydrology to climate forcings over the last glacial period. Science, 340 ( 6140 ), 1564 – 1566. https://doi.org/10.1126/science.1233797
dc.identifier.citedreferenceCarolin, S. A., Cobb, K. M., Lynch‐Stieglitz, J., Moerman, J. W., Partin, J. W., Lejau, S., Malang, J., Clark, B., Tuens, A. A., & Adkins, J. F. ( 2016 ). Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6. Earth and Planetary Science Letters, 439, 182 – 193.
dc.identifier.citedreferenceChen, C. J., & Li, T. Y. ( 2018 ). Geochemical characteristics of cave drip water respond to ENSO based on a 6‐year monitoring work in Yangkou Cave, Southwest China. Journal of Hydrology, 561, 896 – 907.
dc.identifier.citedreferenceChen, S., Hoffmann, S. S., Lund, D. C., Cobb, K. M., Emile‐Geay, J., & Adkins, J. F. ( 2016 ). A high‐resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution. Earth and Planetary Science Letters, 442, 61 – 71.
dc.identifier.citedreferenceCheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., d’Horta, F. M., Ribas, C. C., Vuille, M., Stott, L. D., & Auler, A. S. ( 2013 ). Climate change patterns in Amazonia and biodiversity. Nature Communications, 4, 1411.
dc.identifier.citedreferenceCheng, H., Sinha, A., Wang, X. F., Cruz, F. W., & Edwards, R. L. ( 2012 ). The global paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dynamics, 39 ( 1045 ), 62.
dc.identifier.citedreferenceCobb, K. M., Adkins, J. F., Partin, J. W., & Clark, B. ( 2007 ). Regional‐scale climate influences on temporal variations of rainwater and cave dripwater oxygen isotopes in northern Borneo. Earth and Planetary Science Letters, 263 ( 3‐4 ), 207 – 220.
dc.identifier.citedreferenceCobb, K. M., Charles, C. D., Cheng, H., & Edwards, R. L. ( 2003 ). El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424 ( 6946 ), 271 – 276. https://doi.org/10.1038/nature01779
dc.identifier.citedreferenceCobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E., Cheng, H., Edwards, R. L., & Charles, C. D. ( 2013 ). Highly variable El Niño–Southern Oscillation throughout the Holocene. Science, 339 ( 6115 ), 67 – 70. https://doi.org/10.1126/science.1228246
dc.identifier.citedreferenceConroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M., & Steinitz‐Kannan, M. ( 2008 ). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews, 27 ( 11‐12 ), 1166 – 1180.
dc.identifier.citedreferenceCraig, H. ( 1961 ). Isotopic variations in meteoric waters. Science, 133 ( 3465 ), 1702 – 1703. https://doi.org/10.1126/science.133.3465.1702
dc.identifier.citedreferenceCruz, F. W. Jr., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O., Ferrari, J. A., Silva Dias, P. L., & Viana, O. Jr. ( 2005 ). Insolation‐driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434 ( 7029 ), 63 – 66. https://doi.org/10.1038/nature03365
dc.identifier.citedreferenceCuthbert, M. O., Baker, A., Jex, C. N., Graham, P. W., Treble, P. C., Andersen, M. S., & Acworth, R. I. ( 2014 ). Drip water isotopes in semi‐arid karst: Implications for speleothem paleoclimatology. Earth and Planetary Science Letters, 395, 194 – 204.
dc.identifier.citedreferenceDansgaard, W. ( 1964 ). Stable isotopes in precipitation. Tellus, 16 ( 4 ), 436 – 468.
dc.identifier.citedreferenceDansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl‐Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvldberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., & Bond, G. ( 1993 ). Evidence for general instability of past climate from a 250‐kyr ice‐core record. Nature, 364 ( 6434 ), 218.
dc.identifier.citedreferenceDee, S., Emile‐Geay, J., Evans, M. N., Allam, A., Steig, E. J., & Thompson, D. M. ( 2015 ). PRYSM: An open‐source framework for PRoxY System Modeling, with applications to oxygen‐isotope systems. Journal of Advances in Modeling Earth Systems, 7, 1220 – 1247. https://doi.org/10.1002/2015MS000447
dc.identifier.citedreferenceEvans, M. N., Tolwinski‐Ward, S. E., Thompson, D. M., & Anchukaitis, K. J. ( 2013 ). Applications of proxy system modeling in high resolution paleoclimatology. Quaternary Science Reviews, 76, 16 – 28.
dc.identifier.citedreferenceFairchild, I. J., & Baker, A. ( 2012 ). Speleothem science: From process to past environments ( 1st ed., Vol. 3, p. 432 ). Oxford, UK: Wiley.
dc.identifier.citedreferenceFairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., & McDermott, F. ( 2006 ). Modification and preservation of environmental signals in speleothems. Earth‐Science Reviews, 75 ( 1‐4 ), 105 – 153.
dc.identifier.citedreferenceFleitmann, D., Burns, S. J., Neff, U., Mudelsee, M., Mangini, A., & Matter, A. ( 2004 ). Palaeoclimatic interpretation of high‐resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quaternary Science Reviews, 23 ( 7‐8 ), 935 – 945.
dc.identifier.citedreferenceFord, D., & Williams, P. D. ( 2007 ). Karst hydrogeology and geomorphology ( 1st ed., p. 578 ). Chichester, England: Wiley.
dc.identifier.citedreferenceFrappier, A. B., Sahagian, D., Carpenter, S. J., González, L. A., & Frappier, B. R. ( 2007 ). Stalagmite stable isotope record of recent tropical cyclone events. Geology, 35 ( 2 ), 111 – 114.
dc.identifier.citedreferenceGriffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J. X., Ayliffe, L. K., Hellstrom, J. C., Hantoro, W. S., Frisia, S., Feng, Y.‐X., Cartwright, I., Pierre, E. S., Fischer, M. J., & Suwargadi, B. W. ( 2009 ). Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea‐level rise. Nature Geoscience, 2 ( 9 ), 636.
dc.identifier.citedreferenceGrothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu, Y., Cheng, H., Edwards, L. R., Southon, J. R., Santos, G. M., Deocampo, D. M., Lynch‐Stieglitz, J., Chen, T., Sayani, H., Thompson, D. M., Conroy, J. L., Moore, A. L., Townsend, K., Hagos, M., O’Conner, G., & Toth, L. T. ( 2019 ). Enhanced El Niño–Southern Oscillation variability in recent decades. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083906
dc.identifier.citedreferenceHeinrich, H. ( 1988 ). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29 ( 2 ), 142 – 152.
dc.identifier.citedreferenceHuang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., & Zhang, H. M. ( 2017 ). Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 30 ( 20 ), 8179 – 8205.
dc.identifier.citedreferenceJones, I. C., Banner, J. L., & Humphrey, J. D. ( 2000 ). Estimating recharge in a tropical karst aquifer. Water Resources Research, 36 ( 5 ), 1289 – 1299.
dc.identifier.citedreferenceKennett, D. J., Breitenbach, S. F., Aquino, V. V., Asmerom, Y., Awe, J., Baldini, J. U., Bartlein, P., Culleton, B. J., Ebert, C., Jazwa, C., Macri, M. J., Marwan, N., Polyak, V., Prufer, K. M., Ridley, H. E., Sodemann, H., Winterhalder, B., & Huag, G. H. ( 2012 ). Development and disintegration of Maya political systems in response to climate change. Science, 338 ( 6108 ), 788 – 791.
dc.identifier.citedreferenceKonecky, B. L., Noone, D. C., & Cobb, K. M. ( 2019 ). The influence of competing hydroclimate processes on stable isotope ratios in tropical rainfall. Geophysical Research Letters, 46, 1622 – 1633. https://doi.org/10.1029/2018GL080188
dc.identifier.citedreferenceKurita, N., Horikawa, M., Kanamori, H., Fujinami, H., Kumagai, T. O., Kume, T., & Yasunari, T. ( 2018 ). Interpretation of El Niño–Southern Oscillation‐related precipitation anomalies in north‐western Borneo using isotopic tracers. Hydrological Processes, 32 ( 14 ), 2176 – 2186.
dc.identifier.citedreferenceLachniet, M. S. ( 2009 ). Climatic and environmental controls on speleothem oxygen‐isotope values. Quaternary Science Reviews, 28 ( 5‐6 ), 412 – 432.
dc.identifier.citedreferenceLachniet, M. S., Bernal, J. P., Asmerom, Y., Polyak, V., & Piperno, D. ( 2012 ). A 2400 yr Mesoamerican rainfall reconstruction links climate and cultural change. Geology, 40 ( 3 ), 259 – 262.
dc.identifier.citedreferenceLachniet, M. S., Burns, S. J., Piperno, D. R., Asmerom, Y., Polyak, V. J., Moy, C. M., & Christenson, K. ( 2004 ). A 1500‐year El Niño/Southern Oscillation and rainfall history for the isthmus of Panama from speleothem calcite. Journal of Geophysical Research, 109, D20117. https://doi.org/10.1029/2004JD004694
dc.identifier.citedreferenceLases‐Hernandez, F., Medina‐Elizalde, M., Burns, S., & DeCesare, M. ( 2019 ). Long‐term monitoring of drip water and groundwater stable isotopic variability in the Yucatán Peninsula: Implications for recharge and speleothem rainfall reconstruction. Geochimica et Cosmochimica Acta, 246, 41 – 59.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.