Show simple item record

Isocyanurate transformation induced healing of isocyanurate–oxazolidone polymers

dc.contributor.authorZhang, Lisha
dc.contributor.authorLin, Jiajun
dc.contributor.authorSodano, Henry A.
dc.date.accessioned2020-03-17T18:27:32Z
dc.date.availableWITHHELD_15_MONTHS
dc.date.available2020-03-17T18:27:32Z
dc.date.issued2020-05-20
dc.identifier.citationZhang, Lisha; Lin, Jiajun; Sodano, Henry A. (2020). "Isocyanurate transformation induced healing of isocyanurate–oxazolidone polymers." Journal of Applied Polymer Science 137(20): n/a-n/a.
dc.identifier.issn0021-8995
dc.identifier.issn1097-4628
dc.identifier.urihttps://hdl.handle.net/2027.42/154270
dc.description.abstractIsocyanurate–oxazolidone (ISOX) polymers have been reported as a novel, intrinsically self‐healable thermoset, and their healing mechanism under the effect of nucleophiles, such as tertiary amines and pyridines during polymerization, is thoroughly investigated in this study. This work provides evidence that the healing behavior of the polymers results part from the transformation of isocyanurate to oxazolidone on the fracture surfaces of the ISOX polymers at elevated temperatures. The isocyanurate transformation is characterized by chemical composition of the ISOX polymers before and after a predetermined healing procedure, through a combination characterization of Fourier transform infrared spectroscopy and carbon nuclear magnetic resonance spectroscopy. From the chemical composition of the ISOX polymers, an increased oxazolidone fraction is observed after the healing event, which verifies the hypothesized healing mechanism. By correlating the change in oxazolidone fraction in the polymers during the healing event, with the corresponding healing performance of the polymers, healing efficiencies of the polymers are shown to be inversely proportional to the ratio of oxazolidone to isocyanurate in the polymers. The transformation to oxazolidone is also shown to be dependent on two variables, nucleophilicity of the polymerization catalyst and duration of the postcure. The isocyanate and epoxide polymerization mechanism in the presence of nucleophiles is also investigated to explain the effect of the catalyst nucleophilicity on the chemical composition as well as the healing performance of the ISOX polymers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48698.Isocyanurate‐to‐oxazolidone transformation within the polymers for healing.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherstimuli‐sensitive polymers
dc.subject.othercrosslinking
dc.subject.otherstructure‐property relationships
dc.subject.otherthermosets
dc.titleIsocyanurate transformation induced healing of isocyanurate–oxazolidone polymers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelManagement
dc.subject.hlbtoplevelBusiness and Economics
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154270/1/app48695-sup-0001-FigureS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154270/2/app48698_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154270/3/app48698.pdf
dc.identifier.doi10.1002/app.48698
dc.identifier.sourceJournal of Applied Polymer Science
dc.identifier.citedreferenceKrol, P. Prog. Mater. Sci. 2007, 52 ( 6 ), 915.
dc.identifier.citedreferenceYeganeh, H.; Jamshidi, S.; Talemi, P. H. Eur. Polym. J. 2006, 42 ( 8 ), 1743.
dc.identifier.citedreferenceZhang, L.; Tian, X.; Malakooti, M. H.; Sodano, H. A. Compos. Sci. Technol. 2018, 168, 96.
dc.identifier.citedreferenceWong, S.; Frisch, K. C. J. Polym. Sci. A. 1986, 24 ( 11 ), 2867.
dc.identifier.citedreferenceChian, K. S.; Yi, S. J. Appl. Polym. Sci. 2001, 82 ( 4 ), 879.
dc.identifier.citedreferenceFrisch, K. C.; Sendijarevic, V.; Sendijarevic, A.; Lekovic, H.; Kresta, J. E.; Klempner, D.; Hunter, L.; Banuk, R. J. Cell. Plast. 1992, 28 ( 4 ), 316.
dc.identifier.citedreferenceZhang, L.; Julé, F.; Sodano, H. A. Polymer. 2017, 114, 249.
dc.identifier.citedreferenceSendijarevic, A.; Sendijarevic, V.; Frisch, K. C.; Vlajic, M. J. Elastomers Plast. 1991, 23 ( 3 ), 192.
dc.identifier.citedreferenceFedoseev, M. S.; Derzhavinskaya, L. F.; Borisova, I. A.; Oshchepkova, T. E.; Antipin, V. E.; Tsvetkov, R. V. Polym. Sci. Series D. 2018, 11 ( 4 ), 407.
dc.identifier.citedreferenceKordomenos, P. I.; Kresta, J. E. Macromolecules. 1981, 14 ( 5 ), 1434.
dc.identifier.citedreferenceChattopadhyay, D. K.; Webster, D. C. Prog. Mater. Sci. 2009, 34 ( 10 ), 1068.
dc.identifier.citedreferenceOkumoto, S.; Yamabe, S. J. Comput. Chem. 2001, 22 ( 3 ), 316.
dc.identifier.citedreferencePerrin, D. D.; Dempsey, B.; Serjeant, E. P. pKa Prediction for Organic Acids and Bases. Vol. 1; Springer: London, 1981.
dc.identifier.citedreferenceClark, J.; Perrin, D. D. Chem. Soc. Rev. 1964, 18 ( 3 ), 295.
dc.identifier.citedreferenceUribe, M.; Hodd, K. A. Thermochim. Acta. 1984, 77 ( 1–3 ), 367.
dc.identifier.citedreferenceŠpirkova, M.; Budinski‐Simendic, J.; Ilavský, M.; Špaček, P.; Dušek, K. Polym. Bull. 1993, 31 ( 1 ), 83.
dc.identifier.citedreferenceYounes, U. E.; Boesel, D. M. Reinforced Isocyanurate/Oxazolidone Polymers for Structural Composites Application Society of Automotive Engineers, Inc.: Warrendale, Pennsylvania. SAE Technical Paper 1988, No. 880432.
dc.identifier.citedreferenceFlores, M.; Fernández‐Francos, X.; Morancho, J. M.; Serra, À.; Ramis, X. J. Appl. Polym. Sci. 2012, 125 ( 4 ), 2779.
dc.identifier.citedreferenceCulbertson, B. M.; McGrath, J. E. Advances in Polymer Synthesis. Vol. 31; Springer Science & Business Media: New York, NY, 2012.
dc.identifier.citedreferenceKinjo, N.; Numata, S.; Koyama, T.; Katsuya, Y. Polym. J. 1982, 14 ( 6 ), 505.
dc.identifier.citedreferenceCaille, D.; Pascault, J. P.; Tighzert, L. Polym. Bull. 1990, 24 ( 1 ), 23.
dc.identifier.citedreferenceLee, Y. S.; Hodd, K.; Wright, W. W.; Barton, J. M. Br. Polym. J. 1990, 22 ( 2 ), 97.
dc.identifier.citedreferenceSperanza, G. P.; Peppel, W. J. J. Org. Chem. 1958, 23 ( 12 ), 1922.
dc.identifier.citedreferenceFlores, M.; Fernández‐Francos, X.; Morancho, J. M.; Serra, À.; Ramis, X. Thermochim. Acta. 2012, 543, 188.
dc.identifier.citedreferenceAshida, K.; Frisch, K. C. J. Cell. Plast. 1972, 8 ( 4 ), 194.
dc.identifier.citedreferenceParodi, F. In Comprehensive Polymer Science; Elsevier: Oxford, UK, 1989.
dc.identifier.citedreferenceGalante, M. J.; Williams, R. J. J. Appl. Polym. Sci. 1995, 55 ( 1 ), 89.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.