Show simple item record

SUMOylation of the mitochondrial fission protein Drpl occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle

dc.contributor.authorFigueroa-Romero, Claudia
dc.contributor.authorIñiguez-Lluhí, Jorge A.
dc.contributor.authorStadler, Julia
dc.contributor.authorChang, Chuang-Rung
dc.contributor.authorArnoult, Damien
dc.contributor.authorKeller, Peter J.
dc.contributor.authorHong, Yu
dc.contributor.authorBlackstone, Craig
dc.contributor.authorFeldman, Eva L.
dc.date.accessioned2020-03-17T18:27:34Z
dc.date.available2020-03-17T18:27:34Z
dc.date.issued2009-11
dc.identifier.citationFigueroa-Romero, Claudia; Iñiguez-Lluhí, Jorge A. ; Stadler, Julia; Chang, Chuang-Rung; Arnoult, Damien; Keller, Peter J.; Hong, Yu; Blackstone, Craig; Feldman, Eva L. (2009). "SUMOylation of the mitochondrial fission protein Drpl occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle." The FASEB Journal 23(11): 3917-3927.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154272
dc.description.abstractDynamin‐related protein (Drp) 1 is a key regulator of mitochondrial fission and is composed of GTP‐binding, Middle, insert B, and C‐terminal GTPase effector (GED) domains. Drpl associates with mitochondrial fission sites and promotes membrane constriction through its intrinsic GTPase activity. The mechanisms that regulate Drpl activity remain poorly understood but are likely to involve reversible post‐translational modifications, such as conjugation of small ubiquitin‐like modifier (SUMO) proteins. Through a detailed analysis, we find that Drpl interacts with the SUMO‐conjugating enzyme Ubc9 via multiple regions and demonstrate that Drpl is a direct target of SUMO modification by all three SUMO isoforms. While Drpl does not harbor consensus SUMOylation sequences, our analysis identified2 clusters of lysine residues within the B domain that serve as noncanonical conjugation sites. Although initial analysis indicates that mitochondrial recruitment of ectopically expressed Drpl in response to staurosporine is unaffected by loss of SUMOylation, we find that Drpl SUMOylation is enhanced in the context of the K38A mutation. This dominant‐negative mutant, which is deficient in GTP binding and hydrolysis, does not associate with mitochondria and prevents normal mitochondrial fission. This finding suggests that SUMOylation of Drpl is linked to its activity cycle and is influenced by Drpl localization.—Figueroa‐Romero, C., Iniguez‐Lluhi, J. A., Stadler, J., Chang, C.‐R., Arnoult, D., Keller, P. J., Hong, Y., Blackstone, C., Feldman, E. L. SUMOylation of the mitochondrial fission protein Drpl occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J. 23, 3917–3927 (2009). www.fasebj.org
dc.publisherWiley Periodicals, Inc.
dc.subject.othersmall ubiquitin-like modifier
dc.subject.otherUbc9
dc.subject.otherpost-translational modification
dc.titleSUMOylation of the mitochondrial fission protein Drpl occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154272/1/fsb2fj09136630.pdf
dc.identifier.doi10.1096/fj.09-136630
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceTatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., and Hay, R. T. 2001 Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368 – 35374
dc.identifier.citedreferenceLi, M., Guo, D., Isales, C. M., Eizirik, D. L., Atkinson, M., She, J. X., and Wang, C. Y. 2005 SUMO wrestling with type 1 diabetes. J. Mol. Med. 83, 504 – 513
dc.identifier.citedreferenceDorval, V., and Fraser, P. E. 2007 SUMO on the road to neurodegeneration. Biochim. Biophys. Acta 1773, 694 – 706
dc.identifier.citedreferenceMatic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M., and Vertegaal, A. C. 2008 In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteomics 7, 132 – 144
dc.identifier.citedreferenceZhang, F. P., Mikkonen, L., Toppari, J., Palvimo, J. J., Thesleff, I., and Janne, O. A. 2008 Sumo-1 function is dispensable in normal mouse development. Mol. Cell. Biol. 28, 5381 – 5390
dc.identifier.citedreferenceUlrich, H. D. 2008 The fast-growing business of SUMO chains. Mol. Cell. 32, 301 – 305
dc.identifier.citedreferenceLin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., Ho, C. C., Chen, Y. C., Lin, T. P., Fang, H. I., Hung, C. C., Suen, C. S., Hwang, M. J., Chang, K. S., Maul, G. G., and Shih, H. M. 2006 Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell. 24, 341 – 354
dc.identifier.citedreferenceIvanov, A. V., Peng, H., Yurchenko, V., Yap, K. L., Negorev, D. G., Schultz, D. C., Psulkowski, E., Fredericks, W. J., White, D. E., Maul, G. G., Sadofsky, M. J., Zhou, M. M., and Rauscher, F. J., 3rd 2007 PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell. 28, 823 – 837
dc.identifier.citedreferenceZunino, R., Braschi, E., Xu, L., and McBride, H. M. 2009 Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J. Biol. Chem. 284, 17783 – 17795
dc.identifier.citedreferenceBraschi, E., Zunino, R., and McBride, H. M. 2009 MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep. 10, 748 – 754
dc.identifier.citedreferencevan der Bliek, A. M., Redelmeier, T. E., Damke, H., Tisdale, E. J., Meyerowitz, E. M., and Schmid, S. L. 1993 Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553 – 563
dc.identifier.citedreferenceVater, C. A., Raymond, C. K., Ekena, K., Howald-Stevenson, I., and Stevens, T. H. 1992 The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in Saccharomyces cerevisiae, is a GTPase with two functionally separable domains. J. Cell Biol. 119, 773 – 786
dc.identifier.citedreferenceDamke, H., Baba, T., Warnock, D. E., and Schmid, S. L. 1994 Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915 – 934
dc.identifier.citedreferenceBleazard, W., McCaffery, J. M., King, E. J., Bale, S., Mozdy, A., Tieu, Q., Nunnari, J., and Shaw, J. M. 1999 The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298 – 304
dc.identifier.citedreferenceLabrousse, A. M., Zappaterra, M. D., Rube, D. A., and van der Bliek, A. M. 1999 C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell. 4, 815 – 826
dc.identifier.citedreferencePitts, K. R., Yoon, Y., Krueger, E. W., and McNiven, M. A. 1999 The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell. 10, 4403 – 4417
dc.identifier.citedreferenceYoon, Y., Pitts, K. R., and McNiven, M. A. 2001 Mammalian dynamin-like protein DLP1 tubulates membranes. Mol. Biol. Cell. 12, 2894 – 2905
dc.identifier.citedreferenceYu, T., Sheu, S. S., Robotham, J. L., and Yoon, Y. 2008 Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc. Res. 79, 341 – 351
dc.identifier.citedreferenceJohnson, E. S., and Blobel, G. 1999 Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981 – 994
dc.identifier.citedreferencePountney, D. L., Raftery, M. J., Chegini, F., Blumbergs, P. C., and Gai, W. P. 2008 NSF, Unc-18-1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture. Acta Neuropathol. 116, 603 – 614
dc.identifier.citedreferenceMishra, R. K., Jatiani, S. S., Kumar, A., Simhadri, V. R., Hosur, R. V., and Mittal, R. 2004 Dynamin interacts with members of the sumoylation machinery. J. Biol. Chem. 279, 31445 – 31454
dc.identifier.citedreferenceLeinninger, G. M., Backus, C., Sastry, A. M., Yi, Y. B., Wang, C. W., and Feldman, E. L. 2006 Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol. Dis. 23, 11 – 22
dc.identifier.citedreferenceWang, X., Su, B., Fujioka, H., and Zhu, X. 2008 Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am. J. Pathol. 173, 470 – 482
dc.identifier.citedreferenceYang, Y., Ouyang, Y., Yang, L., Beal, M. F., McQuibban, A., Vogel, H., and Lu, B. 2008 Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl. Acad. Sci. U. S. A. 105, 7070 – 7075
dc.identifier.citedreferenceMen, X., Wang, H., Li, M., Cai, H., Xu, S., Zhang, W., Xu, Y., Ye, L., Yang, W., Wollheim, C. B., and Lou, J. 2009 Dynamin-related protein 1 mediates high glucose induced pancreatic beta cell apoptosis. Int. J. Biochem. Cell Biol. 41, 879 – 890
dc.identifier.citedreferenceMukherjee, S., Thomas, M., Dadgar, N., Lieberman, A. P., and Iniguez-Lluhl, J. A. 2009 SUMO modification of the androgen receptor attenuates polyglutamine-mediated aggregation. J. Biol. Chem., M109.011494
dc.identifier.citedreferenceSubramaniam, S., Sixt, K. M., Barrow, R., and Snyder, S. H. 2009 Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 324, 1327 – 1330
dc.identifier.citedreferenceCerveny, K. L., Tamura, Y., Zhang, Z., Jensen, R. E., and Sesaki, H. 2007 Regulation of mitochondrial fusion and division. Trends Cell Biol. 17, 563 – 569
dc.identifier.citedreferenceGriparic, L., van der Wel, N. N., Orozco, I. J., Peters, P. J., and van der Bliek, A. M. 2004 Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J. Biol. Chem. 279, 18792 – 18798
dc.identifier.citedreferenceSantel, A., Frank, S., Gaume, B., Herrler, M., Youle, R. J., and Fuller, M. T. 2003 Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. CellSci. 116, 2763 – 2774
dc.identifier.citedreferenceWells, R. C., Picton, L. K., Williams, S. C., Tan, F. J., and Hill, R. B. 2007 Direct binding of the dynamin-like GTPase, Dnm1, to mitochondrial dynamics protein Fis1 is negatively regulated by the Fis1 N-terminal arm. J. Biol. Chem. 282, 33769 – 33775
dc.identifier.citedreferenceYoon, Y., Krueger, E. W., Oswald, B. J., and McNiven, M. A. 2003 The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell. Biol. 23, 5409 – 5420
dc.identifier.citedreferenceMozdy, A. D., McCaffery, J. M., and Shaw, J. M. 2000 Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367 – 380
dc.identifier.citedreferenceChen, H., and Chan, D. C. 2006 Critical dependence of neurons on mitochondrial dynamics. Curr. Opin. Cell Biol. 18, 453 – 459
dc.identifier.citedreferenceBaloh, R. H. 2008 Mitochondrial dynamics and peripheral neuropathy. Neuroscientist 14, 12 – 18
dc.identifier.citedreferenceChan, D. C. 2007 Mitochondrial dynamics in disease. N. Engl. J. Med. 356, 1707 – 1709
dc.identifier.citedreferenceGhafourifar, P., Mousavizadeh, K., Parihar, M. S., Nazarewicz, R. R., Parihar, A., and Zenebe, W. J. 2008 Mitochondria in multiple sclerosis. Front. Biosci. 13, 3116 – 3126
dc.identifier.citedreferenceZeviani, M., and Carelli, V. 2007 Mitochondrial disorders. Curr. Opin. Neurol. 20, 564 – 571
dc.identifier.citedreferenceAlexander, C., Votruba, M., Pesch, U. E., Thiselton, D. L., Mayer, S., Moore, A., Rodriguez, M., Kellner, U., Leo-Kottler, B., Auburger, G., Bhattacharya, S. S., and Wissinger, B. 2000 OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211 – 215
dc.identifier.citedreferenceDelettre, C., Lenaers, G., Griffoin, J. M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., Astarie-Dequeker, C., Lasquellec, L., Arnaud, B., Ducommun, B., Kaplan, J., and Hamel, C. P. 2000 Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207 – 210
dc.identifier.citedreferenceSampson, D. A., Wang, M., and Matunis, M. J. 2001 The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664 – 21669
dc.identifier.citedreferenceZuchner, S., Mersiyanova, I. V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E. L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., Parman, Y., Evgrafov, O., Jonghe, P. D., Takahashi, Y., Tsuji, S., Pericak-Vance, M. A., Quattrone, A., Battaloglu, E., Polyakov, A. V., Timmerman, V., Schroder, J. M., and Vance, J. M. 2004 Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36, 449 – 451
dc.identifier.citedreferenceWaterham, H. R., Koster, J., van Roermund, C. W., Mooyer, P. A., Wanders, R. J., and Leonard, J. V. 2007 A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736 – 1741
dc.identifier.citedreferenceZhu, P. P., Patterson, A., Stadler, J., Seeburg, D. P., Sheng, M., and Blackstone, C. 2004 Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J. Biol. Chem. 279, 35967 – 35974
dc.identifier.citedreferenceIngerman, E., Perkins, E. M., Marino, M., Mears, J. A., McCaffery, J. M., Hinshaw, J. E., and Nunnari, J. 2005 Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021 – 1027
dc.identifier.citedreferenceSmirnova, E., Griparic, L., Shurland, D. L., and van der Bliek, A. M. 2001 Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245 – 2256
dc.identifier.citedreferenceSmirnova, E., Shurland, D. L., Ryazantsev, S. N., and van der Bliek, A. M. 1998 A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351 – 358
dc.identifier.citedreferenceCassidy-Stone, A., Chipuk, J. E., Ingerman, E., Song, C., Yoo, C., Kuwana, T., Kurth, M. J., Shaw, J. T., Hinshaw, J. E., Green, D. R., and Nunnari, J. 2008 Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell. 14, 193 – 204
dc.identifier.citedreferenceEtxebarria, A., Terrones, O., Yamaguchi, H., Landajuela, A., Landeta, O., Antonsson, B., Wang, H. G., and Basanez, G. 2009 Endophilin B1/Bif-1 stimulates BAX activation independently from its capacity to produce large-scale membrane morphological rearrangements. J. Biol. Chem. 284, 4200 – 4212
dc.identifier.citedreferenceFrank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L., and Youle, R. J. 2001 The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell. 1, 515 – 525
dc.identifier.citedreferenceCereghetti, G. M., Stangherlin, A., Martins de Brito, O., Chang, C. R., Blackstone, C., Bernardi, P., and Scorrano, L. 2008 Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl. Acad. Sci. U. S. A. 105, 15803 – 15808
dc.identifier.citedreferenceChang, C. R., and Blackstone, C. 2007 Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583 – 21587
dc.identifier.citedreferenceCho, D. H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., and Lipton, S. A. 2009 S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102 – 105
dc.identifier.citedreferenceCribbs, J. T., and Strack, S. 2007 Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939 – 944
dc.identifier.citedreferenceHan, X. J., Lu, Y. F., Li, S. A., Kaitsuka, T., Sato, Y., Tomizawa, K., Nairn, A. C., Takei, K., Matsui, H., and Matsushita, M. 2008 CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J. Cell Biol. 182, 573 – 585
dc.identifier.citedreferenceHarder, Z., Zunino, R., and McBride, H. 2004 Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14, 340 – 345
dc.identifier.citedreferenceNakamura, N., Kimura, Y., Tokuda, M., Honda, S., and Hirose, S. 2006 MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7, 1019 – 1022
dc.identifier.citedreferenceTaguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. 2007 Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521 – 11529
dc.identifier.citedreferenceWasiak, S., Zunino, R., and McBride, H. M. 2007 Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177, 439 – 450
dc.identifier.citedreferenceZunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M., and McBride, H. M. 2007 The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J. Cell Sci. 120, 1178 – 1188
dc.identifier.citedreferenceUlrich, H. D. 2005 Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol. 15, 525 – 532
dc.identifier.citedreferenceSaitoh, H., and Hinchey, J. 2000 Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252 – 6258
dc.identifier.citedreferenceSu, H. L., and Li, S. S. 2002 Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 296, 65 – 73
dc.identifier.citedreferenceBohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., and Owerbach, D. 2004 A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J. Biol. Chem. 279, 27233 – 27238
dc.identifier.citedreferenceOwerbach, D., McKay, E. M., Yeh, E. T., Gabbay, K. H., and Bohren, K. M. 2005 A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun. 337, 517 – 520
dc.identifier.citedreferenceChun, T. H., Itoh, H., Subramanian, L., Iniguez-Lluhi, J. A., and Nakao, K. 2003 Modification of GATA-2 transcriptional activity in endothelial cells by the SUMO E3 ligase PIASy. Circ. Res. 92, 1201 – 1208
dc.identifier.citedreferencePichler, A., Gast, A., Seeler, J. S., Dejean, A., and Melchior, F. 2002 The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109 – 120
dc.identifier.citedreferenceSachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., and Grosschedl, R. 2001 PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088 – 3103
dc.identifier.citedreferenceYeh, E. T., Gong, L., and Kamitani, T. 2000 Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1 – 14
dc.identifier.citedreferenceChupreta, S., Holmstrom, S., Subramanian, L., and Iniguez-Lluhi, J. A. 2005 A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol. Cell. Biol. 25, 4272 – 4282
dc.identifier.citedreferenceSong, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., and Chen, Y. 2004 Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. U. S. A. 101, 14373 – 14378
dc.identifier.citedreferenceBenson, M. D., Li, Q. J., Kieckhafer, K., Dudek, D., Whorton, M. R., Sunahara, R. K., Iniguez-Lluhi, J. A., and Martens, J. R. 2007 SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc. Natl. Acad. Sci. U. S. A. 104, 1805 – 1810
dc.identifier.citedreferenceVojtek, A. B., Hollenberg, S. M., and Cooper, J. A. 1993 Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205 – 214
dc.identifier.citedreferenceArnoult, D., Grodet, A., Lee, Y. J., Estaquier, J., and Blackstone, C. 2005 Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem. 280, 35742 – 35750
dc.identifier.citedreferenceArnoult, D., Rismanchi, N., Grodet, A., Roberts, R. G., Seeburg, D. P., Estaquier, J., Sheng, M., and Blackstone, C. 2005 Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr. Biol. 15, 2112 – 2118
dc.identifier.citedreferenceSantel, A., and Frank, S. 2008 Shaping mitochondria: The complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life 60, 448 – 455
dc.identifier.citedreferenceBernier-Villamor, V., Sampson, D. A., Matunis, M. J., and Lima, C. D. 2002 Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345 – 356
dc.identifier.citedreferenceRodriguez, M. S., Dargemont, C., and Hay, R. T. 2001 SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654 – 12659
dc.identifier.citedreferenceKamimoto, T., Nagai, Y., Onogi, H., Muro, Y., Wakabayashi, T., and Hagiwara, M. 1998 Dymple, a novel dynamin-like high molecular weight GTPase lacking a proline-rich carboxylterminal domain in mammalian cells. J. Biol. Chem. 273, 1044 – 1051
dc.identifier.citedreferenceNiemann, H. H., Knetsch, M. L., Scherer, A., Manstein, D. J., and Kull, F. J. 2001 Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20, 5813 – 5821
dc.identifier.citedreferenceGermain, M., Mathai, J. P., McBride, H. M., and Shore, G. C. 2005 Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J. 24, 1546 – 1556
dc.identifier.citedreferenceSchrader, M. 2006 Shared components of mitochondrial and peroxisomal division. Biochim. Biophys. Acta 1763, 531 – 541
dc.identifier.citedreferenceShin, H. W., Shinotsuka, C., Torii, S., Murakami, K., and Nakayama, K. 1997 Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J. Biochem. 122, 525 – 530
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.