Show simple item record

Role of extracellular histones in the cardiomyopathy of sepsis

dc.contributor.authorKalbitz, Miriam
dc.contributor.authorGrailer, Jamison J.
dc.contributor.authorFattahi, Fatemeh
dc.contributor.authorJajou, Lawrence
dc.contributor.authorHerron, Todd J.
dc.contributor.authorCampbell, Katherine F.
dc.contributor.authorZetoune, Firas S.
dc.contributor.authorBosmann, Markus
dc.contributor.authorSarma, J. Vidya
dc.contributor.authorHuber‐lang, Markus
dc.contributor.authorGebhard, Florian
dc.contributor.authorLoaiza, Randall
dc.contributor.authorValdivia, Hector H.
dc.contributor.authorJalife, José
dc.contributor.authorRussell, Mark W.
dc.contributor.authorWard, Peter A.
dc.date.accessioned2020-03-17T18:27:36Z
dc.date.available2020-03-17T18:27:36Z
dc.date.issued2015-05
dc.identifier.citationKalbitz, Miriam; Grailer, Jamison J.; Fattahi, Fatemeh; Jajou, Lawrence; Herron, Todd J.; Campbell, Katherine F.; Zetoune, Firas S.; Bosmann, Markus; Sarma, J. Vidya; Huber‐lang, Markus ; Gebhard, Florian; Loaiza, Randall; Valdivia, Hector H.; Jalife, José ; Russell, Mark W.; Ward, Peter A. (2015). "Role of extracellular histones in the cardiomyopathy of sepsis." The FASEB Journal 29(5): 2185-2193.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154273
dc.description.abstractThe purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca2+]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nachtâ , LRRâ , and PYDâ domainsâ containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca2+]i, as wellas defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction.â Kalbitz, M., Grailer, J. J., Fattahi, F., Jajou, L., Herron, T. J., Campbell, K. F., Zetoune, F. S., Bosmann, M., Sarma, J. V., Huberâ Lang, M., Gebhard, F., Loaiza, R., Valdivia, H. H., Jalife, J., Russell, M. W., Ward, P. A. Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J. 29, 2185â 2193 (2015). www.fasebj.org
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.othercardiomyocytes
dc.subject.otherechocardiogram/Doppler
dc.subject.otherpolymicrobial sepsis
dc.subject.othercomplement
dc.subject.otherNLRP3 inflammasome
dc.titleRole of extracellular histones in the cardiomyopathy of sepsis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154273/1/fsb2fj14268730.pdf
dc.identifier.doi10.1096/fj.14-268730
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferencePieske, B., Maier, L. S., Bers, D. M., and Hasenfuss, G. ( 1999 ) Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ. Res. 85, 38 â 46
dc.identifier.citedreferenceHöpken, U. E., Lu, B., Gerard, N. P., and Gerard, C. ( 1996 ) The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383, 86 â 89
dc.identifier.citedreferenceMonestier, M., Fasy, T. M., Losman, M. J., Novick, K. E., and Muller, S. ( 1993 ) Structure and binding properties of monoclonal antibodies to core histones from autoimmune mice. Mol. Immunol. 30, 1069 â 1075
dc.identifier.citedreferenceBaker, C. C., Chaudry, I. H., Gaines, H. O., and Baue, A. E. ( 1983 ) Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94, 331 â 335
dc.identifier.citedreferenceRittirsch, D., Huber-Lang, M. S., Flierl, M. A., and Ward, P. A. ( 2009 ) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31 â 36
dc.identifier.citedreferenceKaestner, L., Scholz, A., Hammer, K., Vecerdea, A., Ruppenthal, S., and Lipp, P. ( 2009 ) Isolation and genetic manipulation of adult cardiac myocytes for confocal imaging. J. Vis. Exp. ( 31 )
dc.identifier.citedreferenceLouch, W. E., Sheehan, K. A., and Wolska, B. M. ( 2011 ) Methods in cardiomyocyte isolation, culture, and gene transfer. J. Mol. Cell. Cardiol. 51, 288 â 298
dc.identifier.citedreferenceHerron, T. J., Vandenboom, R., Fomicheva, E., Mundada, L., Edwards, T., and Metzger, J. M. ( 2007 ) Calcium-independent negative inotropy by beta-myosin heavy chain gene transfer in cardiac myocytes. Circ. Res. 100, 1182 â 1190
dc.identifier.citedreferenceBoluyt, M. O., Converso, K., Hwang, H. S., Mikkor, A., and Russell, M. W. ( 2004 ) Echocardiographic assessment of age-associated changes in systolic and diastolic function of the female F344 rat heart. J. Appl. Physiol. 96, 822 â 828
dc.identifier.citedreferenceYamamichi, S., Fujiwara, Y., Kikuchi, T., Nishitani, M., Matsushita, Y., and Hasumi, K. ( 2011 ) Extracellular histone induces plasma hyaluronan-binding protein (factor VII activating protease) activation in vivo. Biochem. Biophys. Res. Commun. 409, 483 â 488
dc.identifier.citedreferenceTingare, A., Thienpont, B., and Roderick, H. L. ( 2013 ) Epigenetics in the heart: the role of histone modifications in cardiac remodelling. Biochem. Soc. Trans. 41, 789 â 796
dc.identifier.citedreferenceNakahara, M., Ito, T., Kawahara, K., Yamamoto, M., Nagasato, T., Shrestha, B., Yamada, S., Miyauchi, T., Higuchi, K., Takenaka, T., Yasuda, T., Matsunaga, A., Kakihana, Y., Hashiguchi, T., Kanmura, Y., and Maruyama, I. ( 2013 ) Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLoS ONE 8, e75961
dc.identifier.citedreferenceMunt, B., Jue, J., Gin, K., Fenwick, J., and Tweeddale, M. ( 1998 ) Diastolic filling in human severe sepsis: an echocardiographic study. Crit. Care Med. 26, 1829 â 1833
dc.identifier.citedreferenceJafri, S. M., Lavine, S., Field, B. E., Bahorozian, M. T., and Carlson, R. W. ( 1990 ) Left ventricular diastolic function in sepsis. Crit. Care Med. 18, 709 â 714
dc.identifier.citedreferenceGrailer, J. J., Canning, B. A., Kalbitz, M., Haggadone, M. D., Dhond, R. M., Andjelkovic, A. V., Zetoune, F. S., and Ward, P. A. ( 2014 ) Critical role for the NLRP3 inflammasome during acute lung injury. J. Immunol. 192, 5974 â 5983
dc.identifier.citedreferenceRittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huber-Lang, M., Mackay, C. R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Köhl, J., Gerard, C., Sarma, J. V., and Ward, P. A. ( 2008 ) Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551 â 557
dc.identifier.citedreferenceFuchs, T. A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D. D., Jr., Wrobleski, S. K., Wakefield, T. W., Hartwig, J. H., and Wagner, D. D. ( 2010 ) Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 107, 15880 â 15885
dc.identifier.citedreferenceSemeraro, F., Ammollo, C. T., Morrissey, J. H., Dale, G. L., Friese, P., Esmon, N. L., and Esmon, C. T. ( 2011 ) Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118, 1952 â 1961
dc.identifier.citedreferenceHuber-Lang, M., Sarma, J. V., Zetoune, F. S., Rittirsch, D., Neff, T. A., McGuire, S. R., Lambris, J. D., Warner, R. L., Flierl, M. A., Hoesel, L. M., Gebhard, F., Younger, J. G., Drouin, S. M., Wetsel, R. A., and Ward, P. A. ( 2006 ) Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12, 682 â 687
dc.identifier.citedreferenceKanse, S. M., Gallenmueller, A., Zeerleder, S., Stephan, F., Rannou, O., Denk, S., Etscheid, M., Lochnit, G., Krueger, M., and Huber-Lang, M. ( 2012 ) Factor VII-activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a. J. Immunol. 188, 2858 â 2865
dc.identifier.citedreferenceKleine, T. J., Lewis, P. N., and Lewis, S. A. ( 1997 ) Histone-induced damage of a mammalian epithelium: the role of protein and membrane structure. Am. J. Physiol. 273, C1925 â C1936
dc.identifier.citedreferenceKleine, T. J., Gladfelter, A., Lewis, P. N., and Lewis, S. A. ( 1995 ) Histone-induced damage of a mammalian epithelium: the conductive effect. Am. J. Physiol. 268, C1114 â C1125
dc.identifier.citedreferenceFeng, Y., and Chao, W. ( 2011 ) Toll-like receptors and myocardial inflammation. Int. J. Inflamm. 2011, 170352
dc.identifier.citedreferenceZhang, Y., Tocchetti, C. G., Krieg, T., and Moens, A. L. ( 2012 ) Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic. Biol. Med. 53, 1531 â 1540
dc.identifier.citedreferenceSantos, C. X., Anilkumar, N., Zhang, M., Brewer, A. C., and Shah, A. M. ( 2011 ) Redox signaling in cardiac myocytes. Free Radic. Biol. Med. 50, 777 â 793
dc.identifier.citedreferenceZima, A. V., and Blatter, L. A. ( 2006 ) Redox regulation of cardiac calcium channels and transporters. Cardiovasc. Res. 71, 310 â 321
dc.identifier.citedreferenceXu, K. Y., Zweier, J. L., and Becker, L. C. ( 1997 ) Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2+)-ATPase function by direct attack on the ATP binding site. Circ. Res. 80, 76 â 81
dc.identifier.citedreferenceGiordano, F. J. ( 2005 ) Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Invest. 115, 500 â 508
dc.identifier.citedreferenceRudiger, A., and Singer, M. ( 2013 ) The heart in sepsis: from basic mechanisms to clinical management. Curr. Vasc. Pharmacol. 11, 187 â 195
dc.identifier.citedreferenceHassoun, S. M., Marechal, X., Montaigne, D., Bouazza, Y., Decoster, B., Lancel, S., and Neviere, R. ( 2008 ) Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit. Care Med. 36, 2590 â 2596
dc.identifier.citedreferenceMinamikawa, T., Sriratana, A., Williams, D. A., Bowser, D. N., Hill, J. S., and Nagley, P. ( 1999 ) Chloromethyl-X-rosamine (MitoTracker Red) photosensitises mitochondria and induces apoptosis in intact human cells. J. Cell Sci. 112, 2419 â 2430
dc.identifier.citedreferenceKnowlton, A. A., Chen, L., and Malik, Z. A. ( 2013 ) Heart Failure and Mitochondrial Dysfunction: The Role of Mitochondrial Fission/Fusion Abnormalities and New Therapeutic Strategies. J. Cardiovasc. Pharmacol.
dc.identifier.citedreferenceMignotte, B., and Vayssiere, J. L. ( 1998 ) Mitochondria and apoptosis. Eur. J. Biochem 252, 1 â 15
dc.identifier.citedreferenceHanson, C. J., Bootman, M. D., and Roderick, H. L. ( 2004 ) Cell signalling: IP3 receptors channel calcium into cell death. Curr. Biol. 14, R933 â 935
dc.identifier.citedreferenceTakasu, O., Gaut, J. P., Watanabe, E., To, K., Fagley, R. E., Sato, B., Jarman, S., Efimov, I. R., Janks, D. L., Srivastava, A., Bhayani, S. B., Drewry, A., Swanson, P. E., and Hotchkiss, R. S. ( 2013 ) Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am. J. Respir. Crit. Care Med. 187, 509 â 517
dc.identifier.citedreferenceMekontso Dessap, A., Razazi, K., Brun-Buisson, C., and Deux, J. F. ( 2014 ) Myocardial viability in human septic heart. Intensive Care Med. 40, 1746 â 1748
dc.identifier.citedreferenceOikonomopoulou, K., Ricklin, D., Ward, P. A., and Lambris, J. D. ( 2012 ) Interactions between coagulation and complementâ their role in inflammation. Semin. Immunopathol. 34, 151 â 165
dc.identifier.citedreferenceCharpentier, J., Luyt, C. E., Fulla, Y., Vinsonneau, C., Cariou, A., Grabar, S., Dhainaut, J. F., Mira, J. P., and Chiche, J. D. ( 2004 ) Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Crit. Care Med. 32, 660 â 665
dc.identifier.citedreferenceCeles, M. R., Prado, C. M., and Rossi, M. A. ( 2013 ) Sepsis: going to the heart of the matter. Pathobiology 80, 70 â 86
dc.identifier.citedreferenceRudiger, A., and Singer, M. ( 2007 ) Mechanisms of sepsis-induced cardiac dysfunction. Crit. Care Med. 35, 1599 â 1608
dc.identifier.citedreferenceParker, M. M., Shelhamer, J. H., Bacharach, S. L., Green, M. V., Natanson, C., Frederick, T. M., Damske, B. A., and Parrillo, J. E. ( 1984 ) Profound but reversible myocardial depression in patients with septic shock. Ann. Intern. Med. 100, 483 â 490
dc.identifier.citedreferenceSeong, S. Y., and Matzinger, P. ( 2004 ) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4, 469 â 478
dc.identifier.citedreferenceDenk, S., Perl, M., and Huber-Lang, M. ( 2012 ) Damage- and pathogen-associated molecular patterns and alarmins: keys to sepsis? Eur. Surg. Res. 48, 171 â 179
dc.identifier.citedreferenceBoyd, J. H., Mathur, S., Wang, Y., Bateman, R. M., and Walley, K. R. ( 2006 ) Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72, 384 â 393
dc.identifier.citedreferenceAllam, R., Scherbaum, C. R., Darisipudi, M. N., Mulay, S. R., Hägele, H., Lichtnekert, J., Hagemann, J. H., Rupanagudi, K. V., Ryu, M., Schwarzenberger, C., Hohenstein, B., Hugo, C., Uhl, B., Reichel, C. A., Krombach, F., Monestier, M., Liapis, H., Moreth, K., Schaefer, L., and Anders, H. J. ( 2012 ) Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J. Am. Soc. Nephrol. 23, 1375 â 1388
dc.identifier.citedreferenceXu, J., Zhang, X., Monestier, M., Esmon, N. L., and Esmon, C. T. ( 2011 ) Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol. 187, 2626 â 2631
dc.identifier.citedreferenceXu, J., Zhang, X., Pelayo, R., Monestier, M., Ammollo, C. T., Semeraro, F., Taylor, F. B., Esmon, N. L., Lupu, F., and Esmon, C. T. ( 2009 ) Extracellular histones are major mediators of death in sepsis. Nat. Med. 15, 1318 â 1321
dc.identifier.citedreferenceOstrowski, S. R., Berg, R. M., Windeløv, N. A., Meyer, M. A., Plovsing, R. R., Møller, K., and Johansson, P. I. ( 2013 ) Coagulopathy, catecholamines, and biomarkers of endothelial damage in experimental human endotoxemia and in patients with severe sepsis: a prospective study. J. Crit. Care 28, 586 â 596
dc.identifier.citedreferenceAbrams, S. T., Zhang, N., Manson, J., Liu, T., Dart, C., Baluwa, F., Wang, S. S., Brohi, K., Kipar, A., Yu, W., Wang, G., and Toh, C. H. ( 2013 ) Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med. 187, 160 â 169
dc.identifier.citedreferenceKutcher, M. E., Xu, J., Vilardi, R. F., Ho, C., Esmon, C. T., and Cohen, M. J. ( 2012 ) Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J. Trauma Acute Care Surg. 73, 1389 â 1394
dc.identifier.citedreferenceBosmann, M., Grailer, J. J., Ruemmler, R., Russkamp, N. F., Zetoune, F. S., Sarma, J. V., Standiford, T. J., and Ward, P. A. ( 2013 ) Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J. 27, 5010 â 5021
dc.identifier.citedreferenceGerard, N. P., Lu, B., Liu, P., Craig, S., Fujiwara, Y., Okinaga, S., and Gerard, C. ( 2005 ) An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J. Biol. Chem. 280, 39677 â 39680
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.