Show simple item record

Lateral dispersion of dye and drifters in the center of a very large lake

dc.contributor.authorChoi, Jun
dc.contributor.authorTroy, Cary
dc.contributor.authorHawley, Nathan
dc.contributor.authorMcCormick, Michael
dc.contributor.authorWells, Mathew
dc.date.accessioned2020-03-17T18:27:43Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-03-17T18:27:43Z
dc.date.issued2020-02
dc.identifier.citationChoi, Jun; Troy, Cary; Hawley, Nathan; McCormick, Michael; Wells, Mathew (2020). "Lateral dispersion of dye and drifters in the center of a very large lake." Limnology and Oceanography 65(2): 336-348.
dc.identifier.issn0024-3590
dc.identifier.issn1939-5590
dc.identifier.urihttps://hdl.handle.net/2027.42/154278
dc.description.abstractTo better understand lateral dispersion of buoyant and nonbuoyant pollutants within the surface waters of large lakes, two lateral dispersion experiments were carried out in Lake Michigan during the stratified period: (1) a dye tracking experiment lasting 1 d; and (2) a drifter tracking experiment lasting 24 d. Both the dye patch and drifters were surface‐released at the center of Lake Michigan’s southern basin. Near‐surface shear induced by near‐inertial Poincaré waves partially explains elevated dye dispersion rates (1.5–4.2 m2 s−1). During the largely windless first 5 d of the drifter release, the drifters exhibited nearly scale‐independent dispersion (K ∼ L0.2), with an average dispersion coefficient of 0.14 m2 s−1. Scale‐dependent drifter dispersion ensued after 5 d, with K ∼ L1.09 and corresponding dispersion coefficients of 0.3–2.0 m2 s−1 for length scales L = 1500–8000 m. The largest drifter dispersion rates were found to be associated with lateral shear‐induced spreading along a thermal front. Comparisons with other systems show a wide range of spreading rates for large lakes, and larger rates in both the ocean and the Gulf of Mexico, which may be caused by the relative absence of submesoscale processes in offshore Lake Michigan.
dc.publisherJohn Wiley & Sons, Inc.
dc.titleLateral dispersion of dye and drifters in the center of a very large lake
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154278/1/lno11302_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154278/2/lno11302.pdf
dc.identifier.doi10.1002/lno.11302
dc.identifier.sourceLimnology and Oceanography
dc.identifier.citedreferencePeeters, F., A. Wüest, G. Piepke, and D. M. Imboden. 1996. Horizontal mixing in lakes. J. Geophys. Res. 101: 18361 – 18375. doi: 10.1029/96JC01145.
dc.identifier.citedreferenceLaxague, N. J., and others. 2018. Observations of near‐surface current shear help describe oceanic oil and plastic transport. Geophys. Res. Lett. 45: 245 – 249. doi: 10.1002/2017GL075891.
dc.identifier.citedreferenceLee, C., D. J. Schwab, D. Beletsky, J. Stroud, and B. Lesht. 2007. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake Michigan. J. Geophys. Res. 112: C02018. doi: 10.1029/2005JC003419.
dc.identifier.citedreferenceLumpkin, R., and S. Elipot. 2010. Surface drifter pair spreading in the North Atlantic. J. Geophys. Res. 115: C12017. doi: 10.1029/2010JC006338.
dc.identifier.citedreferenceLumpkin, R., T. Özgökmen, and L. Centurioni. 2017. Advances in the application of surface drifters. Ann. Rev. Mar. Sci. 9: 59 – 81. doi: 10.1146/annurev-marine-010816-060641.
dc.identifier.citedreferenceMater, B. D., and K. Venayagamoorthy. 2015. Biases in Thorpe‐scale estimates of turbulent dissipation. Part I: Assessments from large‐scale overturns in oceanographic data. J. Phys. Oceanogr. 45: 2497 – 2521. doi: 10.1175/JPO-D-14-0128.1.
dc.identifier.citedreferenceMcKinney, P., B. Holt, and K. Matsumoto. 2012. Small eddies observed in Lake Superior using SAR and sea surface temperature imagery. J. Great Lakes Res. 38: 786 – 797. doi: 10.1016/j.jglr.2012.09.023.
dc.identifier.citedreferenceMcWilliams, J. C. 2016. Submesoscale currents in the ocean. Proc. R. Soc. A Math. Phys. Eng. Sci. 472: 20160117. doi: 10.1098/rspa.2016.0117.
dc.identifier.citedreferenceMortimer, C. H. 2004. Lake Michigan in motion‐responses of an inland sea to weather, earth‐spin, and human activities. The Univ. of Wisconsin Press.
dc.identifier.citedreferenceMurthy, C. 1976. Horizontal diffusion characteristics in Lake Ontario. J. Phys. Oceanogr. 6: 76 – 84. doi: 10.1175/1520‐0485(1976)006<0076:HDCILO>2.0.CO;2.
dc.identifier.citedreferenceOkubo, A. 1971. Oceanic diffusion diagrams. Deep‐Sea Res. Oceanogr. Abstr. 18: 789 – 802. doi: 10.1016/00117471(71)90046-5.
dc.identifier.citedreferenceOlascoaga, M. J., and G. Haller. 2012. Forecasting sudden changes in environmental pollution patterns. Proc. Natl. Acad. Sci. USA 109: 4738 – 4743. doi: 10.1073/pnas.1118574109.
dc.identifier.citedreferencePeeters, F., and H. Hofmann. 2015. Length‐scale dependence of horizontal dispersion in the surface water of lakes. Limnol. Oceanogr. 60: 1917 – 1934. doi: 10.1002/lno.10141.
dc.identifier.citedreferencePoje, A. C., and others. 2014. Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA 111: 12693 – 12698. doi: 10.1073/pnas.1402452111.
dc.identifier.citedreferenceRalph, E. A. 2002. Scales and structures of large lake eddies. Geophys. Res. Lett. 29: 2177. doi: 10.1029/2001GL014654.
dc.identifier.citedreferenceRichardson, L. F. 1926. Atmospheric diffusion shown on a distance‐neighbour graph. Proc. R. Soc. Lond. A 110: 709 – 737. doi: 10.1098/rspa.1926.0043.
dc.identifier.citedreferenceRowe, M. D., and others. 2016. Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short‐term forecasts in Lake Erie. J. Geophys. Res. 121: 5296 – 5314. doi: 10.1002/2016JC011720.
dc.identifier.citedreferenceStocker, R., and J. Imberger. 2003. Horizontal transport and dispersion in the surface layer of a medium‐sized lake. Limnol. Oceanogr. 48: 971 – 982. doi: 10.4319/lo.2003.48.3.0971.
dc.identifier.citedreferenceThomas, L. N., A. Tandon, and A. Mahadevan. 2008. Submesoscale processes and dynamics, p. 17 – 38. In M. W. Hecht and H. Hasumi [eds.], Eddy resolving ocean modeling. Geophys. Monogr. Ser., v. 177, American Geophysical Union.
dc.identifier.citedreferenceAhmed, S., C. D. Troy, and N. Hawley. 2014. Spatial structure of internal Poincaré waves in Lake Michigan. Environ. Fluid Mech. 14: 1229 – 1249. doi: 10.1007/s10652-013-9294-3.
dc.identifier.citedreferenceBatchelor, G. 1950. The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Meteorol. Soc. 76: 133 – 146. doi: 10.1002/qj.49707632804.
dc.identifier.citedreferenceBeletsky, D., D. M. Mason, D. J. Schwab, E. S. Rutherford, J. Janssen, D. F. Clapp, and J. M. Dettmers. 2007. Biophysical model of larval yellow perch advection and settlement in Lake Michigan. J. Great Lakes Res. 33: 842 – 866. doi: 10.3394/0380‐1330(2007)33[842:BMOLYP]2.0.CO;2.
dc.identifier.citedreferenceBeletsky, D., and others. 2017. Predicting spread of aquatic invasive species by lake currents. J. Great Lakes Res. 43: 14 – 32. doi: 10.1016/j.jglr.2017.02.001.
dc.identifier.citedreferenceChoi, J., C. D. Troy, T. C. Hsieh, N. Hawley, and M. J. McCormick. 2012. A year of internal Poincaré waves in southern Lake Michigan. J. Geophys. Res. 117: C07014. doi: 10.1029/2012JC007984.
dc.identifier.citedreferenceChoi, J. M., C. D. Troy, and N. Hawley. 2015. Shear dispersion from near‐inertial internal Poincaré waves in large lakes. Limnol. Oceanogr. 60: 2222 – 2235. doi: 10.1002/lno.10163.
dc.identifier.citedreferenceCushman‐Roisin, B., and J. M. Beckers. 2011. Introduction to geophysical fluid dynamics: Physical and numerical aspects. Academic Press.
dc.identifier.citedreferenceEadie, B. J., J. A. Robbins, J. V. Klump, D. J. Schwab, and D. N. Edgington. 2008. Winter‐spring storms and their influence on sediment resuspension, transport, and accumulation patterns in southern Lake Michigan. Oceanography 21: 118 – 135. doi: 10.5670/oceanog.2008.09.
dc.identifier.citedreferenceFischer, H., E. List, R. Koh, J. Imberger, and N. Brooks. 1979. Mixing in inland and coastal waters. Academic Press.
dc.identifier.citedreferenceHoffman, M. J., and E. Hittinger. 2017. Inventory and transport of plastic debris in the Laurentian Great Lakes. Mar. Pollut. Bull. 115: 273 – 281. doi: 10.1016/j.marpolbul.2016.11.061.
dc.identifier.citedreferenceKerfoot, W. C., J. W. Budd, S. A. Green, J. B. Cotner, B. A. Biddanda, D. J. Schwab, and H. A. Vanderploeg. 2008. Doughnut in the desert: Late‐winter production pulse in southern Lake Michigan. Limnol. Oceanogr. 53: 589 – 604. doi: 10.4319/lo.2008.53.2.0589.
dc.identifier.citedreferenceKoszalka, I., J. H. LaCasce, and K. A. Orvik. 2009. Relative dispersion in the Nordic Seas. J. Mar. Res. 67: 411 – 433. doi: 10.1357/002224009790741102.
dc.identifier.citedreferenceLaCasce, J. H. 2008. Statistics from Lagrangian observations. Prog. Oceanogr. 77: 1 – 29. doi: 10.1016/j.pocean.2008.02.002.
dc.identifier.citedreferenceLawrence, G. A., K. I. Ashley, N. Yonemitsu, and J. R. Ellis. 1995. Natural dispersion in a small lake. Limnol. Oceanogr. 40: 1519 – 1526. doi: 10.4319/lo.1995.40.8.1519.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.