Gene expression centroids that link with low intrinsic aerobic exercise capacity and complex disease risk
dc.contributor.author | Kivela, Riikka | |
dc.contributor.author | Silvennoinen, Mika | |
dc.contributor.author | Lehti, Maarit | |
dc.contributor.author | Rinnankoski‐tuikka, Rita | |
dc.contributor.author | Purhonen, Tatja | |
dc.contributor.author | Ketola, Tarmo | |
dc.contributor.author | Pullinen, Katri | |
dc.contributor.author | Vuento, Meri | |
dc.contributor.author | Mutanen, Niina | |
dc.contributor.author | Sartor, Maureen A. | |
dc.contributor.author | Reunanen, Hilkka | |
dc.contributor.author | Koch, Lauren G. | |
dc.contributor.author | Britton, Steven L. | |
dc.contributor.author | Kainulainen, Heikki | |
dc.date.accessioned | 2020-03-17T18:27:46Z | |
dc.date.available | 2020-03-17T18:27:46Z | |
dc.date.issued | 2010-11 | |
dc.identifier.citation | Kivela, Riikka; Silvennoinen, Mika; Lehti, Maarit; Rinnankoski‐tuikka, Rita ; Purhonen, Tatja; Ketola, Tarmo; Pullinen, Katri; Vuento, Meri; Mutanen, Niina; Sartor, Maureen A.; Reunanen, Hilkka; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki (2010). "Gene expression centroids that link with low intrinsic aerobic exercise capacity and complex disease risk." The FASEB Journal 24(11): 4565-4574. | |
dc.identifier.issn | 0892-6638 | |
dc.identifier.issn | 1530-6860 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/154281 | |
dc.description.abstract | A strong link exists between low aerobic exercise capacity and complex metabolic diseases. To probe this linkage, we utilized rat models of low and high intrinsic aerobic endurance running capacity that differ also in the risk for metabolic syndrome. We investigated in skeletal muscle geneâ phenotype relationships that connect aerobic endurance capacity with metabolic disease risk factors. The study compared 12 high capacity runners (HCRs) and 12 low capacity runners (LCRs) from generation 18 of selection that differed by 615% for maximal treadmill endurance running capacity. On average, LCRs were heavier and had increased blood glucose, insulin, and triglycerides compared with HCRs. HCRs were higher for resting metabolic rate, voluntary activity, serum high density lipoproteins, muscle capillarity, and mitochondrial area. Bioinformatic analysis of skeletal muscle gene expression data revealed that many genes upâ regulated in HCRs were related to oxidative energy metabolism. Seven mean mRNA expression centroids, including oxidative phosphorylation and fatty acid metabolism, correlated significantly with several exercise capacity and disease risk phenotypes. These expressionâ phenotype correlations, together with diminished skeletal muscle capillarity and mitochondrial area in LCR rats, support the general hypothesis that an inherited intrinsic aerobic capacity can underlie disease risks.â Kivelä, R., Silvennoinen, M., Lehti, M., Rinnankoskiâ Tuikka, R., Purhonen, T., Ketola, T., Pullinen, K., Vuento, M., Mutanen, N., Sartor, M. A., Reunanen, H., Koch, L. G., Britton, S. L., Kainulainen, H. Gene expression centroids that link with low intrinsic aerobic exercise capacity and complex disease risk. FASEB J. 24, 4565â 4574 (2010). www.fasebj.org | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Federation of American Societies for Experimental Biology | |
dc.subject.other | skeletal muscle | |
dc.subject.other | complex metabolic disease | |
dc.subject.other | oxygen metabolism | |
dc.subject.other | mitochondria | |
dc.subject.other | lipid metabolism | |
dc.title | Gene expression centroids that link with low intrinsic aerobic exercise capacity and complex disease risk | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154281/1/fsb2fj10157313.pdf | |
dc.identifier.doi | 10.1096/fj.10-157313 | |
dc.identifier.source | The FASEB Journal | |
dc.identifier.citedreference | Liu, Z., and Cao, W. ( 2009 ) P38 mitogenâ activated protein kinase: A critical node linking insulin resistance and cardiovascular diseases in type 2 diabetes mellitus. Endocr. Metab. immune. Disord. Drug Targets. 9, 38 â 46 | |
dc.identifier.citedreference | Kokkinos, P., Myers, J., Kokkinos, J. P., Pittaras, A., Narayan, P., Manolis, A., Karasik, P., Greenberg, M., Papademetriou, V., and Singh, S. ( 2008 ) Exercise capacity and mortality in black and white men. Circulation 117, 614 â 622 | |
dc.identifier.citedreference | Newman, A. B., Simonsick, E. M., Naydeck, B. L., Boudreau, R. M., Kritchevsky, S. B., Nevitt, M. C., Pahor, M., Satterfield, S., Brach, J. S., Studenski, S. A., and Harris, T. B. ( 2006 ) Association of longâ distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA 295, 2018 â 2026 | |
dc.identifier.citedreference | Bray, M. S., Hagberg, J. M., Perusse, L., Rankinen, T., Roth, S. M., Wolfarth, B., and Bouchard, C. ( 2009 ) The human gene map for performance and healthâ related fitness phenotypes: The 2006â 2007 update. Med. Sci. Sports Exerc. 41, 35 â 73 | |
dc.identifier.citedreference | Koch, L. G., and Britton, S. L. ( 2001 ) Artificial selection for intrinsic aerobic endurance running capacity in rats. Physiol. Genomics 5, 45 â 52 | |
dc.identifier.citedreference | Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabasi, A. L. ( 2000 ) The largeâ scale organization of metabolic networks. Nature 407, 651 â 654 | |
dc.identifier.citedreference | Zhu, J., Zhang, B., Smith, E. N., Drees, B., Brem, R. B., Kruglyak, L., Bumgarner, R. E., and Schadt, E. E. ( 2008 ) Integrating largeâ scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet. 40, 854 â 861 | |
dc.identifier.citedreference | Howlett, R. A., Gonzalez, N. C., Wagner, H. E., Fu, Z., Britton, S. L., Koch, L. G., and Wagner, P. D. ( 2003 ) Selected contribution: Skeletal muscle capillarity and enzyme activity in rats selectively bred for running endurance. J. Appl. Physiol. 94, 1682 â 1688 | |
dc.identifier.citedreference | Howlett, R. A., Kirkton, S. D., Gonzalez, N. C., Wagner, H. E., Britton, S. L., Koch, L. G., and Wagner, P. D. ( 2009 ) Peripheral oxygen transport and utilization in rats following continued selective breeding for endurance running capacity. J. Appl. Physiol. 106, 1819 â 1825 | |
dc.identifier.citedreference | Wisloff, U., Najjar, S. M., Ellingsen, O., Haram, P. M., Swoap, S., Alâ Share, Q., Fernstrom, M., Rezaei, K., Lee, S. J., Koch, L. G., and Britton, S. L. ( 2005 ) Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307, 418 â 420 | |
dc.identifier.citedreference | Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D., and Groop, L. C. ( 2003 ) PGCâ 1alphaâ responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267 â 273 | |
dc.identifier.citedreference | Friedewald, W. T., Levy, R. I., and Fredrickson, D. S. ( 1972 ) Estimation of the concentration of lowâ density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499 â 502 | |
dc.identifier.citedreference | Brooke, M. H., and Kaiser, K. K. ( 1970 ) Three â myosin adenosine triphosphataseâ systems: The nature of their pH lability and sulfhydryl dependence. J. Histochem. Cytochem. 18, 670 â 672 | |
dc.identifier.citedreference | Andersen, J. L., and Aagaard, P. ( 2000 ) Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve 23, 1095 â 1104 | |
dc.identifier.citedreference | Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. ( 2004 ) Affyâ analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307 â 315 | |
dc.identifier.citedreference | Dennis, G. Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., and Lempicki, R. A. ( 2003 ) DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3 | |
dc.identifier.citedreference | Huang da, W., Sherman, B. T., and Lempicki, R. A. ( 2009 ) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44 â 57 | |
dc.identifier.citedreference | Sartor, M. A., Leikauf, G. D., and Medvedovic, M. ( 2009 ) LRpath: A logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25, 211 â 217 | |
dc.identifier.citedreference | Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. ( 2005 ) Gene set enrichment analysis: A knowledgeâ based approach for interpreting genomeâ wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545 â 15550 | |
dc.identifier.citedreference | Packard, G. C., and Boardman, T. J. ( 1999 ) The use of percentâ ages and size specific indices to normalize physiological data for variation in body size: Wasted time, wasted effort? Comp. Biochem. Phys. A 122, 37 â 44 | |
dc.identifier.citedreference | Hendrix, L. J., Carter, M. W., and Scott, D. T. ( 1982 ) Covariance analyses with heterogeneity of slopes in fixed models. Biometrics 38, 641 â 650 | |
dc.identifier.citedreference | Carlborg, O., Jacobsson, L., Ahgren, P., Siegel, P., and Andersson, L. ( 2006 ) Epistasis and the release of genetic variation during longâ term selection. Nat. Genet. 38, 418 â 420 | |
dc.identifier.citedreference | Mootha, V. K., Handschin, C., Arlow, D., Xie, X., St Pierre, J., Sihag, S., Yang, W., Altshuler, D., Puigserver, P., Patterson, N., Willy, P. J., Schulman, I. G., Heyman, R. A., Lander, E. S., and Spiegelman, B. M. ( 2004 ) Erralpha and Gabpa/b specify PGCâ 1alphaâ dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl. Acad. Sci. U. S. A. 101, 6570 â 6575 | |
dc.identifier.citedreference | Riant, E., Waget, A., Cogo, H., Arnal, J. F., Burcelin, R., and Gourdy, P. ( 2009 ) Estrogens protect against highâ fat dietâ induced insulin resistance and glucose intolerance in mice. Endocrinology 150, 2109 â 2117 | |
dc.identifier.citedreference | Wright, D. C. ( 2007 ) Mechanisms of calciumâ induced mitochondrial biogenesis and GLUT4 synthesis. Appl. Physiol. Nutr. Metab. 32, 840 â 845 | |
dc.identifier.citedreference | Weigert, C., Brodbeck, K., Staiger, H., Kausch, C., Machicao, F., Haring, H. U., and Schleicher, E. D. ( 2004 ) Palmitate, but not unsaturated fatty acids, induces the expression of interleukinâ 6 in human myotubes through proteasomeâ dependent activation of nuclear factorâ kappaB. J. Biol. Chem. 279, 23942 â 23952 | |
dc.identifier.citedreference | Glund, S., Deshmukh, A., Long, Y. C., Moller, T., Koistinen, H. A., Caidahl, K., Zierath, J. R., and Krook, A. ( 2007 ) Interleukinâ 6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 56, 1630 â 1637 | |
dc.identifier.citedreference | Timmons, J. A., Knudsen, S., Rankinen, T., Koch, L. G., Sarzynski, M. A., Jensen, T., Keller, P., Scheele, C., Vollaard, N. B., Nielsen, S., Akerstrom, T., Macdougald, O. A., Jansson, E., Greenhaff, P. L., Tarnopolsky, M. A., van Loon, L. J., Pedersen, B. K., Sundberg, C. J., Wahlestedt, C., Britton, S. L., and Bouchard, C. ( 2010 ) Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J. Appl. Physiol. 108, 1487 â 1496 | |
dc.identifier.citedreference | Lessard, S. J., Rivas, D. A., Chen, Z. P., van Denderen, B. J., Watt, M. J., Koch, L. G., Britton, S. L., Kemp, B. E., and Hawley, J. A. ( 2009 ) Impaired skeletal muscle βâ adrenergic activation and lipolysis are associated with wholeâ body insulin resistance in rats bred for low intrinsic exercise capacity. Endocrinology 150, 4883 â 4891 | |
dc.identifier.citedreference | Thyfault, J. P., Rector, R. S., Uptergrove, G. M., Borengasser, S. J., Morris, E. M., Wei, Y., Laye, M. J., Burant, C. F., Qi, N. R., Ridenhour, S. E., Koch, L. G., Britton, S. L., and Ibdah, J. A. ( 2009 ) Rats selectively bred for low aerobic capacity have reduced hepatic mitochondrial oxidative capacity and susceptibility to hepatic steatosis and injury. J. Physiol. 587, 1805 â 1816 | |
dc.identifier.citedreference | Naples, S. P., Borengasser, S. J., Rector, R. S., Uptergrove, G. M., Morris, E. M., Mikus, C. R., Koch, L. G., Britton, S. L., Ibdah, J. A., and Thyfault, J. P. ( 2010 ) Skeletal muscle mitochondrial and metabolic responses to a highâ fat diet in female rats bred for high and low aerobic capacity. Appl. Physiol. Nutr. Metab. 35, 151 â 162 | |
dc.identifier.citedreference | Novak, C. M., Escande, C., Gerber, S. M., Chini, E. N., Zhang, M., Britton, S. L., Koch, L. G., and Levine, J. A. ( 2009 ) Endurance capacity, not body size, determines physical activity levels: Role of skeletal muscle PEPCK. PloS One 4, e5869 | |
dc.identifier.citedreference | Novak, C. M., Escande, C., Burghardt, P. R., Zhang, M., Barbosa, M. T., Chini, E. N., Britton, S. L., Koch, L. G., Akil, H., and Levine, J. A. ( 2010 ) Spontaneous activity, economy of activity, and resistance to dietâ induced obesity in rats bred for high intrinsic aerobic capacity. [Eâ pub ahead of print] Horm. Behav. doi: 10.1016/j.yhbeh.2010.03.013 | |
dc.identifier.citedreference | Ways, J. A., Cicila, G. T., Garrett, M. R., and Koch, L. G. ( 2002 ) A genome scan for loci associated with aerobic running capacity in rats. Genomics 80, 13 â 20 | |
dc.identifier.citedreference | Ways, J. A., Smith, B. M., Barbato, J. C., Ramdath, R. S., Pettee, K. M., DeRaedt, S. J., Allison, D. C., Koch, L. G., Lee, S. J., and Cicila, G. T. ( 2007 ) Congenic strains confirm aerobic running capacity quantitative trait loci on rat chromosome 16 and identify possible intermediate phenotypes. Physiol. Genomics 29, 91 â 97 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.