Show simple item record

Pharmacologic activation of estrogen receptor α increases mitochondrial function, energy expenditure, and brown adipose tissue

dc.contributor.authorPonnusamy, Suriyan
dc.contributor.authorTran, Quynh T.
dc.contributor.authorHarvey, Innocence
dc.contributor.authorSmallwood, Heather S.
dc.contributor.authorThiyagarajan, Thirumagal
dc.contributor.authorBanerjee, Souvik
dc.contributor.authorJohnson, Daniel L.
dc.contributor.authorDalton, James T.
dc.contributor.authorSullivan, Ryan D.
dc.contributor.authorMiller, Duane D.
dc.contributor.authorBridges, Dave
dc.contributor.authorNarayanan, Ramesh
dc.date.accessioned2020-03-17T18:27:52Z
dc.date.available2020-03-17T18:27:52Z
dc.date.issued2017-01
dc.identifier.citationPonnusamy, Suriyan; Tran, Quynh T.; Harvey, Innocence; Smallwood, Heather S.; Thiyagarajan, Thirumagal; Banerjee, Souvik; Johnson, Daniel L.; Dalton, James T.; Sullivan, Ryan D.; Miller, Duane D.; Bridges, Dave; Narayanan, Ramesh (2017). "Pharmacologic activation of estrogen receptor α increases mitochondrial function, energy expenditure, and brown adipose tissue." The FASEB Journal 31(1): 266-281.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154285
dc.publisherWiley Periodicals, Inc.
dc.publisherFederation of American Societies for Experimental Biology
dc.subject.otherexercise mimetic
dc.subject.othermitochondria
dc.subject.otheroxygen consumption
dc.subject.otherobesity
dc.subject.othermetabolic diseases
dc.titlePharmacologic activation of estrogen receptor α increases mitochondrial function, energy expenditure, and brown adipose tissue
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154285/1/fsb2fj201600787rr.pdf
dc.identifier.doi10.1096/fj.201600787rr
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceHeinonen, S., Buzkova, J., Muniandy, M., Kaksonen, R., Ollikainen, M., Ismail, K., Hakkarainen, A., Lundbom, J., Lundbom, N., Vuolteenaho, K., Moilanen, E., Kaprio, J., Rissanen, A., Suomalainen, A., and Pietiléinen, K. H. ( 2015 ) Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes 64, 3135 – 3145
dc.identifier.citedreferenceWu, Q., Tang, S. G., and Yuan, Z. M. ( 2015 ) Gremlin 2 inhibits adipocyte differentiation through activation of Wnt/b‐catenin signaling. Mol. Med. Rep. 12, 5891 – 5896
dc.identifier.citedreferenceLi, A., Leung, C. T., Peterson‐Yantorno, K., Stamer, W. D., Mitchell, C. H., and Civan, M. M. ( 2012 ) Mechanisms of ATP release by human trabecular meshwork cells, the enabling step in purinergic regulation of aqueous humor outflow. J. Cell. Physiol. 227, 172 – 182
dc.identifier.citedreferenceGuirguis, E., Hockman, S., Chung, Y. W., Ahmad, F., Gavrilova, O., Raghavachari, N., Yang, Y., Niu, G., Chen, X., Yu, Z. X., Liu, S., Degerman, E., and Manganiello, V. ( 2013 ) A role for phosphodiesterase 3B in acquisition of brown fat characteristics by white adipose tissue in male mice. Endocrinology 154, 3152 – 3167
dc.identifier.citedreferenceRupérez, A. I., Olza, J., Gil‐Campos, M., Leis, R., Mesa, M.D., Tojo, R., Cañete, R., Gil, A., and Aguilera, C. M. ( 2014 ) Association of genetic polymorphisms for glutathione peroxidase genes with obesity in Spanish children. J. Nutrigenet. Nutrigenomics 7, 130 – 142
dc.identifier.citedreferenceCatalán, V., Gómez‐Ambrosi, J., Rodríguez, A., Ramírez, B., Silva, C., Rotellar, F., Gil, M. J., Cienfuegos, J. A., Salvador, J., and Frühbeck, G. ( 2009 ) Increased adipose tissue expression of lipocalin‐2 in obesity is related to inflammation and matrix metalloproteinase‐2 and metalloproteinase‐9 activities in humans. J. Mol. Med. (Berl.) 87, 803 – 813
dc.identifier.citedreferenceFried, S. K., and Greenberg, A. S. ( 2012 ) Lipocalin 2: a “sexy” adipokine that regulates 17b‐estradiol and obesity. Endocrinology 153, 1582 – 1584
dc.identifier.citedreferenceGustafson, B., Hammarstedt, A., Hedjazifar, S., Hoffmann, J. M., Svensson, P. A., Grimsby, J., Rondinone, C., and Smith, U. ( 2015 ) BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes 64, 1670 – 1681
dc.identifier.citedreferenceJones, B. J., and Bloom, S. R. ( 2015 ) The new era of drug therapy for obesity: the evidence and the expectations. Drugs 75, 935 – 945
dc.identifier.citedreferenceSchmid, G. M., Converset, V., Walter, N., Sennitt, M. V., Leung, K. Y., Byers, H., Ward, M., Hochstrasser, D. F., Cawthorne, M. A., and Sanchez, J. C. ( 2004 ) Effect of high‐fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 4, 2270 – 2282
dc.identifier.citedreferenceCostanzo‐Garvey, D. L., Pfluger, P. T., Dougherty, M. K., Stock, J. L., Boehm, M., Chaika, O., Fernandez, M. R., Fisher, K., Kortum, R. L., Hong, E. G., Jun, J. Y., Ko, H. J., Schreiner, A., Volle, D. J., Treece, T., Swift, A. L., Winer, M., Chen, D., Wu, M., Leon, L. R., Shaw, A. S., McNeish, J., Kim, J. K., Morrison, D. K., Tschöp, M. H., and Lewis, R. E. ( 2009 ) KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab. 10, 366 – 378
dc.identifier.citedreferenceQian, S. W., Tang, Y., Li, X., Liu, Y., Zhang, Y. Y., Huang, H. Y., Xue, R. D., Yu, H. Y., Guo, L., Gao, H. D., Liu, Y., Sun, X., Li, Y. M., Jia, W.P., and Tang, Q. Q. ( 2013 ) BMP4‐mediated brown fat‐like changes in white adipose tissue alter glucose and energy homeostasis. Proc. Natl. Acad. Sci. USA 110, e798–e807
dc.identifier.citedreferenceBag, S., Ramaiah, S., and Anbarasu, A. ( 2015 ) fabp4 is central to eight obesity associated genes: a functional gene network‐based polymorphic study. J. Theor. Biol. 364, 344 – 354
dc.identifier.citedreferenceRosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M.W., Gonzalez, F. J., and Spiegelman, B. M. ( 2002 ) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16, 22 – 26
dc.identifier.citedreferenceLean, M. E., and James, W. P. ( 1983 ) Uncoupling protein in human brown adipose tissue mitochondria. Isolation and detection by specific antiserum. FEBS Lett. 163, 235 – 240
dc.identifier.citedreferenceJi, L., Gupta, M., and Feldman, B. J. ( 2016 ) Vitamin D regulates fatty acid composition in subcutaneous adipose tissue through Elovl3. Endocrinology 1, 91 – 97
dc.identifier.citedreferenceChrysovergis, K., Wang, X., Kosak, J., Lee, S. H., Kim, J. S., Foley, J.F., Travlos, G., Singh, S., Baek, S. J., and Eling, T. E. ( 2014 ) NAG‐1/GDF15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int. J. Obes. 38, 1555 – 1564
dc.identifier.citedreferenceFink, T., and Zachar, V. ( 2011 ) Adipogenic differentiation of human mesenchymal stem cells. Methods Mol. Biol. 698, 243 – 251
dc.identifier.citedreferenceChan, D. C. ( 2006 ) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241 – 1252
dc.identifier.citedreferenceChoi, S., and Snider, A. J. ( 2015 ) Sphingolipids in high fat diet and obesity‐related diseases. Mediators Inflamm. 2015, 520618
dc.identifier.citedreferenceKurek, K., Mikłosz, A., Łukaszuk, B., Chabowski, A., Górski, J., and Żendzian‐Piotrowska, M. ( 2015 ) Inhibition of ceramide de novo synthesis ameliorates diet induced skeletal muscles insulin resistance. J. Diabetes Res. 2015, 154762
dc.identifier.citedreferenceMatula, K., Collie‐Duguid, E., Murray, G., Parikh, K., Grabsch, H., Tan, P., Lalwani, S., Garau, R., Ong, Y., Bain, G., Smith, A. D., Urquhart, G., Bielawski, J., Finnegan, M., and Petty, R. ( 2015 ) Regulation of cellular sphingosine‐1‐phosphate by sphingosine kinase 1 and sphingosine‐1‐phopshate lyase determines chemotherapy resistance in gastroesophageal cancer. BMC Cancer 15, 762
dc.identifier.citedreferencePérez, S. E., Chen, E. Y., and Mufson, E. J. ( 2003 ) Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. Brain Res. Dev. Brain Res. 145, 117 – 139
dc.identifier.citedreferenceRebouças, E. C., Leal, S., and Sá, S. I. ( 2016 ) Regulation of NPY and a‐MSH expression by estradiol in the arcuate nucleus of Wistar female rats: a stereological study. Neurol. Res. 38, 740 – 747
dc.identifier.citedreferencePeng, X. R., Gennemark, P., O’Mahony, G., and Bartesaghi, S. ( 2015 ) Unlock the thermogenic potential of adipose tissue: pharmacological modulation and implications for treatment of diabetes and obesity. Front. Endocrinol. (Lausanne) 6, 174
dc.identifier.citedreferenceMiao, Y., Wu, W., Dai, Y., Maneix, L., Huang, B., Warner, M., and Gustafsson, J.A. ( 2015 ) Liver Xreceptor b controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue. Proc. Natl. Acad. Sci. USA 112, 14006–14011
dc.identifier.citedreferenceFang, S., Suh, J. M., Reilly, S. M., Yu, E., Osborn, O., Lackey, D., Yoshihara, E., Perino, A., Jacinto, S., Lukasheva, Y., Atkins, A. R., Khvat, A., Schnabl, B., Yu, R. T., Brenner, D. A., Coulter, S., Liddle, C., Schoonjans, K., Olefsky, J. M., Saltiel, A. R., Downes, M., and Evans, R. M. ( 2015 ) Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21, 159 – 165
dc.identifier.citedreferencePedram, A., Razandi, M., Korach, K. S., Narayanan, R., Dalton, J. T., and Levin, E. R. ( 2013 ) ERb selective agonist inhibits angiotensininduced cardiovascular pathology in female mice. Endocrinology 154, 4352 – 4364
dc.identifier.citedreferencePedram, A., Razandi, M., Narayanan, R., Dalton, J. T., McKinsey, T. A., and Levin, E. R. ( 2013 ) Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. Mol. Biol. Cell 24, 3805 – 3818
dc.identifier.citedreferencePedram, A., Razandi, M., O’Mahony, F., Lubahn, D., and Levin, E. R. ( 2010 ) Estrogen receptor‐beta prevents cardiac fibrosis. Mol. Endocrinol. 24, 2152 – 2165
dc.identifier.citedreferenceWang, Q., Zhang, M., Xu, M., Gu, W., Xi, Y., Qi, L., Li, B., and Wang, W. ( 2015 ) Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS One 10, e0123795
dc.identifier.citedreferenceTharp, K. M., and Stahl, A. ( 2015 ) Bioengineering beige adipose tissue therapeutics. Front. Endocrinol. (Lausanne) 6, 164
dc.identifier.citedreferenceFlegal, K. M., Carroll, M. D., Kit, B. K., and Ogden, C. L. ( 2012 ) Prevalence of obesity and trends in the distribution of body mass index among U.S. adults, 1999–2010. JAMA 307, 491 – 497
dc.identifier.citedreferenceOgden, C. L., Carroll, M.D., Kit, B. K., and Flegal, K. M. ( 2014 ) Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806 – 814
dc.identifier.citedreferenceShrager, B., Jibara, G. A., Tabrizian, P., Roayaie, S., and Ward, S. C. ( 2012 ) Resection of nonalcoholic steatohepatitis‐associated hepatocellular carcinoma: a Western experience. Int. J. Surg. Oncol. 2012, 915128
dc.identifier.citedreferenceJensen, M.D., Ryan, D. H., Apovian, C. M., Ard, J.D., Comuzzie, A.G., Donato, K.A., Hu, F.B., Hubbard, V. S., Jakicic, J.M., Kushner, R. F., Loria, C. M., Millen, B. E., Nonas, C. A., Pi‐Sunyer, F. X., Stevens, J., Stevens, V. J., Wadden, T. A., Wolfe, B. M., and Yanovski, S. Z.; American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Obesity Society. ( 2014 ) 2013 AHA/ ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society. J. Am. Coll. Cardiol. 63 ( 25 Pt B ), 2985 – 3023. Erratum in: J. Am. Coll. Cardiol. 2014;63(25 Pt B), 3029–3030
dc.identifier.citedreferenceBray, G. A., and Gray, D. S. ( 1988 ) Obesity. Part I‐pathogenesis. West. J. Med. 149, 429 – 441
dc.identifier.citedreferenceMadden, N. ( 2015 ) Obesity weighing down U.S. economy, study finds [electronic version]. WashingtonTimes. Retrieved September 19, 2016, from http://www.washingtontimes.com/news/2015/may/13/obesity‐weighing‐down‐us‐economy‐study‐finds/
dc.identifier.citedreferenceCunningham, J. W., and Wiviott, S. D. ( 2014 ) Modern obesity pharmacotherapy: weighing cardiovascular risk and benefit. Clin. Cardiol. 37, 693 – 699
dc.identifier.citedreferencePatel, D. ( 2015 ) Pharmacotherapy for the management of obesity. Metabolism 64, 1376 – 1385
dc.identifier.citedreferenceSmith, S.R., Weissman, N.J., Anderson, C.M., Sanchez, M., Chuang, E., Stubbe, S., Bays, H., Shanahan, W. R., and Behavioral, M.; Behavioral Modification and Lorcaserin for Overweight and Obesity Management (BLOOM) Study Group. ( 2010 ) Multicenter, placebo‐controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245 – 256
dc.identifier.citedreferenceMercken, E. M., Carboneau, B. A., Krzysik‐Walker, S. M., and de Cabo, R. ( 2012 ) Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res. Rev. 11, 390 – 398
dc.identifier.citedreferenceLee, Y. K., and Cowan, C. A. ( 2013 ) White to brite adipocyte transition and back again. Nat. Cell Biol. 15, 568 – 569
dc.identifier.citedreferenceMoisan, A., Lee, Y. K., Zhang, J. D., Hudak, C. S., Meyer, C. A., Prummer, M., Zoffmann, S., Truong, H. H., Ebeling, M., Kiialainen, A., Gérard, R., Xia, F., Schinzel, R. T., Amrein, K. E., and Cowan, C. A. ( 2015 ) White‐to‐brown metabolic conversion of human adipocytes by JAK inhibition. Nat. Cell Biol. 17, 57 – 67
dc.identifier.citedreferenceRoberts, L. D., Boström, P., O’Sullivan, J. F., Schinzel, R. T., Lewis, G. D., Dejam, A., Lee, Y. K., Palma, M.J., Calhoun, S., Georgiadi, A., Chen, M. H., Ramachandran, V. S., Larson, M. G., Bouchard, C., Rankinen, T., Souza, A. L., Clish, C. B., Wang, T. J., Estall, J. L., Soukas, A. A., Cowan, C. A., Spiegelman, B. M., and Gerszten, R. E. ( 2014 ) b‐Aminoisobutyric acid induces browning of white fat and hepatic b‐oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19, 96 – 108
dc.identifier.citedreferenceFan, W., Atkins, A.R., Yu, R.T., Downes, M., and Evans, R.M. ( 2013 ) Road to exercise mimetics: targeting nuclear receptors in skeletal muscle. J. Mol. Endocrinol. 51, T87 – T100
dc.identifier.citedreferenceNarkar, V. A., Downes, M., Yu, R. T., Embler, E., Wang, Y. X., Banayo, E., Mihaylova, M.M., Nelson, M.C., Zou, Y., Juguilon, H., Kang, H., Shaw, R. J., and Evans, R. M. ( 2008 ) AMPK and PPARdelta agonists are exercise mimetics. Cell 134, 405 – 415
dc.identifier.citedreferenceBhardwaj, P., Du, B., Zhou, X. K., Sue, E., Giri, D., Harbus, M.D., Falcone, D. J., Hudis, C. A., Subbaramaiah, K., and Dannenberg, A. J. ( 2015 ) Estrogen protects against obesity‐induced mammary gland inflammation in mice. Cancer Prev. Res. (Phila.) 8, 751 – 759
dc.identifier.citedreferenceLuglio, H. F. ( 2014 ) Estrogen and body weight regulation in women: the role of estrogen receptor alpha (ER‐a) on adipocyte lipolysis. Acta Med. Indones. 46, 333 – 338
dc.identifier.citedreferenceDavis, K.E., Carstens, E.J., Irani, B. G., Gent, L. M., Hahner, L. M., and Clegg, D. J. ( 2014 ) Sexually dimorphic role of G protein‐coupled estrogen receptor (GPER) in modulating energy homeostasis. Horm. Behav. 66, 196 – 207
dc.identifier.citedreferenceCypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., Kuo, F.C., Palmer, E. L., Tseng, Y. H., Doria, A., Kolodny, G. M., and Kahn, C. R. ( 2009 ) Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509 – 1517
dc.identifier.citedreferenceWang, Y., Shoemaker, R., Thatcher, S. E., Batifoulier‐Yiannikouris, F., English, V. L., and Cassis, L. A. ( 2015 ) Administration of 17b‐estradiol to ovariectomized obese female mice reverses obesity‐hypertension through an ACE2‐dependent mechanism. Am. J. Physiol. Endocrinol. Metab. 308, e1066–e1075
dc.identifier.citedreferenceSalamanca, S., and Uphouse, L. ( 1992 ) Estradiol modulation of the hyperphagia induced by the 5‐HT1A agonist, 8‐OH‐DPAT. Pharmacol. Biochem. Behav. 43, 953 – 955
dc.identifier.citedreferenceMusatov, S., Chen, W., Pfaff, D. W., Mobbs, C.V., Yang, X.J., Clegg, D. J., Kaplitt, M. G., and Ogawa, S. ( 2007 ) Silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc. Natl. Acad. Sci. USA 104, 2501 – 2506
dc.identifier.citedreferenceSantollo, J., and Eckel, L. A. ( 2013 ) Oestradiol decreases melanin‐concentrating hormone (MCH) and MCH receptor expression in the hypothalamus of female rats. J. Neuroendocrinol. 25, 570 – 579
dc.identifier.citedreferenceRivera, H. M., Santollo, J., Nikonova, L. V., and Eckel, L. A. ( 2012 ) Estradiol increases the anorexia associated with increased 5‐HT(2C) receptor activation in ovariectomized rats. Physiol. Behav. 105, 188 – 194
dc.identifier.citedreferenceDierks‐Ventling, C., and Bieri‐Bonniot, F. ( 1977 ) Stimulation of RNA polymerase I and II activities by 17 beta‐estradiol receptor on chick liver chromatin. Nucleic Acids Res. 4, 381 – 395
dc.identifier.citedreferenceKuiper, G. G., Enmark, E., Pelto‐Huikko, M., Nilsson, S., and Gustafsson, J. A. ( 1996 ) Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 93, 5925 – 5930
dc.identifier.citedreferenceRevankar, C. M., Cimino, D. F., Sklar, L. A., Arterburn, J. B., and Prossnitz, E. R. ( 2005 ) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307, 1625 – 1630
dc.identifier.citedreferenceYoshii, T., Yamada, M., Minami, T., Tsunoda, T., Sasaki, M., Kondo, Y., Satoh, S., and Terauchi, Y. ( 2015 ) The effects of bazedoxifene on bone, glucose, and lipid metabolism in postmenopausal women with type 2 diabetes: an exploratory pilot study. J. Clin. Med. Res. 7, 762 – 769
dc.identifier.citedreferenceMeyer, M. R., Fredette, N. C., Howard, T. A., Hu, C., Ramesh, C., Daniel, C., Amann, K., Arterburn, J. B., Barton, M., and Prossnitz, E. R. ( 2014 ) G protein‐coupled estrogen receptor protects from atherosclerosis. Sci. Rep. 4, 7564
dc.identifier.citedreferenceYepuru, M., Eswaraka, J., Kearbey, J. D., Barrett, C. M., Raghow, S., Veverka, K. A., Miller, D. D., Dalton, J. T., and Narayanan, R. ( 2010 ) Estrogen receptor‐beta‐selective ligands alleviate high‐fat diet‐ and ovariectomy‐induced obesity in mice. J. Biol. Chem. 285, 31292–31303
dc.identifier.citedreferenceJungbauer, A., and Medjakovic, S. ( 2014 ) Phytoestrogens and the metabolic syndrome. J. SteroidBiochem. Mol. Biol. 139, 277 – 289
dc.identifier.citedreferenceWeigt, C., Hertrampf, T., Kluxen, F. M., Flenker, U., Hülsemann, F., Fritzemeier, K. H., and Diel, P. ( 2013 ) Molecular effects of ER alpha‐and beta‐selective agonists on regulation of energy homeostasis in obese female Wistar rats. Mol. Cell. Endocrinol. 377, 147 – 158
dc.identifier.citedreferenceHeine, P. A., Taylor, J. A., Iwamoto, G. A., Lubahn, D. B., and Cooke, P. S. ( 2000 ) Increased adipose tissue in male and female estrogen receptor‐alpha knockout mice. Proc. Natl. Acad. Sci. USA 97, 12729–12734
dc.identifier.citedreferenceCooke, P. S., Heine, P. A., Taylor, J. A., and Lubahn, D. B. ( 2001 ) The role of estrogen and estrogen receptor‐alpha in male adipose tissue. Mol. Cell. Endocrinol. 178, 147 – 154
dc.identifier.citedreferenceIvanova, T., and Beyer, C. ( 2000 ) Ontogenetic expression and sex differences of aromatase and estrogen receptor‐alpha/beta mRNA in the mouse hippocampus. Cell Tissue Res. 300, 231 – 237
dc.identifier.citedreferenceKarolczak, M., and Beyer, C. ( 1998 ) Developmental sex differences in estrogen receptor‐beta mRNA expression in the mouse hypothalamus/preoptic region. Neuroendocrinology 68, 229 – 234
dc.identifier.citedreferenceChiang, S. H., Chang, L., and Saltiel, A. R. ( 2006 ) TC10 and insulin‐stimulated glucose transport. Methods Enzymol. 406, 701 – 714
dc.identifier.citedreferenceForyst‐Ludwig, A., Clemenz, M., Hohmann, S., Hartge, M., Sprang, C., Frost, N., Krikov, M., Bhanot, S., Barros, R., Morani, A., Gustafsson, J. A., Unger, T., and Kintscher, U. ( 2008 ) Metabolic actionsof estrogen receptor beta (ERbeta) are mediated by a negative cross‐talk with PPARgamma. PLoS Genet. 4, e1000108
dc.identifier.citedreferenceBurke, L. K., Doslikova, B., D’Agostino, G., Garfield, A. S., Farooq, G., Burdakov, D., Low, M. J., Rubinstein, M., Evans, M. L., Billups, B., and Heisler, L. K. ( 2014 ) 5‐HT obesity medication efficacy via POMC activation is maintained during aging. Endocrinology 155, 3732 – 3738
dc.identifier.citedreferenceThomsen, W. J., Grottick, A. J., Menzaghi, F., Reyes‐Saldana, H., Espitia, S., Yuskin, D., Whelan, K., Martin, M., Morgan, M., Chen, W., Al‐Shamma, H., Smith, B., Chalmers, D., and Behan, D. ( 2008 ) Lorcaserin, a novel selective human 5‐hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J. Pharmacol. Exp. Ther. 325, 577 – 587
dc.identifier.citedreferenceSmith, B.M., Smith, J. M., Tsai, J. H., Schultz, J. A., Gilson, C.A., Estrada, S. A., Chen, R. R., Park, D. M., Prieto, E. B., Gallardo, C. S., Sengupta, D., Dosa, P. I., Covel, J. A., Ren, A., Webb, R. R., Beeley, N. R., Martin, M., Morgan, M., Espitia, S., Saldana, H. R., Bjenning, C., Whelan, K.T., Grottick, A.J., Menzaghi, F., and Thomsen, W. J. ( 2008 ) Discovery and structure‐activity relationship of (1R)‐8‐chloro‐2,3,4,5tetrahydro‐1‐methyl‐1H‐3‐benzazepine (lorcaserin), a selective serotonin 5‐HT2C receptor agonist for the treatment of obesity. J. Med. Chem. 51, 305 – 313
dc.identifier.citedreferenceAn, S., Han, J. I., Kim, M. J., Park, J. S., Han, J. M., Baek, N. I., Chung, H. G., Choi, M. S., Lee, K. T., and Jeong, T. S. ( 2010 ) Ethanolic extracts of Brassica campestris spp. rapa roots prevent high‐fat diet‐ induced obesity via beta(3) ‐adrenergic regulation of white adipocyte lipolytic activity. J. Med. Food 13, 406 – 414
dc.identifier.citedreferenceIngalls, A. M., Dickie, M. M., and Snell, G. D. ( 1950 ) Obese, a new mutation in the house mouse. J. Hered. 41, 317 – 318
dc.identifier.citedreferenceWu, J., Boström, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A. H., Khandekar, M., Virtanen, K. A., Nuutila, P., Schaart, G., Huang, K., Tu, H., Van Marken Lichtenbelt, W. D., Hoeks, J., Enerbéck, S., Schrauwen, P., and Spiegelman, B. M. ( 2012 ) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366 – 376
dc.identifier.citedreferenceHarms, M., and Seale, P. ( 2013 ) Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252 – 1263
dc.identifier.citedreferenceVirtanen, K. A., Lidell, M. E., Orava, J., Heglind, M., Westergren, R., Niemi, T., Taittonen, M., Laine, J., Savisto, N.J., Enerbéck, S., and Nuutila, P. ( 2009 ) Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518 – 1525
dc.identifier.citedreferenceWang, W., Kissig, M., Rajakumari, S., Huang, L., Lim, H. W., Won, K. J., and Seale, P. ( 2014 ) Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc. Natl. Acad. Sci. USA 111, 14466–14471
dc.identifier.citedreferenceLidell, M. E., Seifert, E. L., Westergren, R., Heglind, M., Gowing, A., Sukonina, V., Arani, Z., Itkonen, P., Wallin, S., Westberg, F., Fernandez‐Rodriguez, J., Laakso, M., Nilsson, T., Peng, X. R., Harper, M. E., and Enerbéck, S. ( 2011 ) The adipocyte‐expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function. Diabetes 60, 427 – 435
dc.identifier.citedreferenceHao, Q., Yadav, R., Basse, A. L., Petersen, S., Sonne, S.B., Rasmussen, S., Zhu, Q., Lu, Z., Wang, J., Audouze, K., Gupta, R., Madsen, L., Kristiansen, K., and Hansen, J.B. ( 2015 ) Transcriptomeprofiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 308, e380–e392
dc.identifier.citedreferenceGnad, T., Scheibler, S., von Kügelgen, I., Scheele, C., Kilióde, A., Hoffmann, L. S., Reverte‐Salisa, L., Horn, P., Mutlu, S., El‐Tayeb, A., Kranz, M., Deuther‐Conrad, W., Brust, P., Lidell, M. E., Betz, M. J., Enerbéck, S., Schrader, J., Yegutkin, G. G., Müller, C. E., and Pfeifer, A. ( 2014 ) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516, 395 – 399
dc.identifier.citedreferenceLiang, J., Xu, Z.X., Ding, Z., Lu, Y., Yu, Q., Werle, K. D., Zhou, G., Park, Y. Y., Peng, G., Gambello, M. J., and Mills, G. B. ( 2015 ) Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat. Commun. 6, 7926
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.