Show simple item record

Effect of different implant placement depths on crestal bone levels and soft tissue behavior: A 5â year randomized clinical trial

dc.contributor.authorSiqueira, Rafael Amorim Cavalcanti
dc.contributor.authorSavaget Gonçalves Junior, Robson
dc.contributor.authorSantos, Paulo Gustavo Freitas
dc.contributor.authorMattias Sartori, Ivete Aparecida
dc.contributor.authorWang, Hom‐lay
dc.contributor.authorFontão, Flavia Noemy Gasparini Kiatake
dc.date.accessioned2020-03-17T18:27:53Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:27:53Z
dc.date.issued2020-03
dc.identifier.citationSiqueira, Rafael Amorim Cavalcanti; Savaget Gonçalves Junior, Robson ; Santos, Paulo Gustavo Freitas; Mattias Sartori, Ivete Aparecida; Wang, Hom‐lay ; Fontão, Flavia Noemy Gasparini Kiatake (2020). "Effect of different implant placement depths on crestal bone levels and soft tissue behavior: A 5â year randomized clinical trial." Clinical Oral Implants Research 31(3): 282-293.
dc.identifier.issn0905-7161
dc.identifier.issn1600-0501
dc.identifier.urihttps://hdl.handle.net/2027.42/154286
dc.description.abstractObjectivesThis randomized clinical trial analyzed the longâ term (5â year) crestal bone changes and soft tissue dimensions surrounding implants with an internal tapered connection placed in the anterior mandibular region at different depths (equiâ and subcrestal).Materials and methodsEleven edentulous patients were randomly divided in a splitâ mouth design: 28 equicrestal implants (G1) and 27 subcrestal (1â 3 mm) implants (G2). Five implants were placed per patient. All implants were immediately loaded. Standardized intraoral radiographs were used to evaluate crestal bone (CB) changes. Patients were assessed immediately, 4, 8, and 60 months after implant placement. The correlation between vertical mucosal thickness (VMT) and soft tissue recession was analyzed. Subâ group analysis was also performed to evaluate the correlation between VMT and CB loss. Rankâ based ANOVA was used for comparison between groups (α = .05).ResultsFiftyâ five implants (G1 = 28 and G2 = 27) were assessed. Implant and prosthetic survival rate were 100%. Subcrestal positioning resulted in less CB loss (â 0.80 mm) when compared to equicrestal position (â 0.99 mm), although the difference was not statistically significant (p > .05). Significant CB loss was found within the G1 and G2 groups at two different measurement times (T4 and T60) (p < .05). Implant placement depths and VMT had no effect on soft tissue recession (p > .05).ConclusionsThere was no statistically significant difference in CB changes between subcrestal and equicrestal implant positioning; however, subcrestal position resulted in higher bone levels. Neither mucosal recession nor vertical mucosa thickness was influenced by different implant placement depths.
dc.publisherJ. Wiley
dc.subject.othersoft tissue
dc.subject.otherbone level osseointegration
dc.subject.otherbone loss
dc.subject.otherbone remodeling
dc.subject.otherdental implant
dc.subject.otherdental implant platformâ switching
dc.subject.otherimmediate dental implant loading
dc.subject.othersubcrestal
dc.titleEffect of different implant placement depths on crestal bone levels and soft tissue behavior: A 5â year randomized clinical trial
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154286/1/clr13569.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154286/2/clr13569_am.pdf
dc.identifier.doi10.1111/clr.13569
dc.identifier.sourceClinical Oral Implants Research
dc.identifier.citedreferencePromsudthi, A., Pimapansri, S., Deerochanawong, C., & Kanchanavasita, W. ( 2005 ). The effect of periodontal therapy on uncontrolled type 2 diabetes mellitus in older subjects. Oral Diseases, 11 ( 5 ), 293 â 298. https://doi.org/10.1111/j.1601-0825.2005.01119.x
dc.identifier.citedreferenceMeijer, H. J. A., Boven, C., Delli, K., & Raghoebar, G. M. ( 2018 ). Is there an effect of crownâ toâ implant ratio on implant treatment outcomes? A systematic review. Clinical Oral Implants Research, 29 ( Suppl 18 ), 243 â 252. https://doi.org/10.1111/clr.13338
dc.identifier.citedreferenceMonje, A., Galindoâ Moreno, P., Tozum, T. F., Suarezâ Lopez del Amo, F., & Wang, H. L. ( 2016 ). Into the paradigm of local factors as contributors for periâ implant disease: Short communication. International Journal of Oral and Maxillofacial Implants, 31 ( 2 ), 288 â 292. https://doi.org/10.11607/jomi.4265
dc.identifier.citedreferenceNovaes, A. B. Jr, Barros, R. R., Muglia, V. A., & Borges, G. J. ( 2009 ). Influence of interimplant distances and placement depth on papilla formation and crestal resorption: A clinical and radiographic study in dogs. Journal of Oral Implantology, 35 ( 1 ), 18 â 27. https://doi.org/10.1563/1548-1336-35.1.18
dc.identifier.citedreferenceNovoa, L., Batalla, P., Caneiro, L., Pico, A., Linares, A., & Blanco, J. ( 2017 ). Influence of abutment height on maintenance of periâ implant crestal bone at boneâ level implants: A 3â year followâ up study. The International Journal of Periodontics & Restorative Dentistry, 37 ( 5 ), 721 â 727. https://doi.org/10.11607/prd.2762
dc.identifier.citedreferenceOh, T. J., Yoon, J., Misch, C. E., & Wang, H. L. ( 2002 ). The causes of early implant bone loss: Myth or science? Journal of Periodontology, 73 ( 3 ), 322 â 333. https://doi.org/10.1902/jop.2002.73.3.322
dc.identifier.citedreferencePalaska, I., Tsaousoglou, P., Vouros, I., Konstantinidis, A., & Menexes, G. ( 2016 ). Influence of placement depth and abutment connection pattern on bone remodeling around 1â stage implants: A prospective randomized controlled clinical trial. Clinical Oral Implants Research, 27 ( 2 ), e47 â e56. https://doi.org/10.1111/clr.12527
dc.identifier.citedreferencePellicerâ Chover, H., Penarrochaâ Diago, M., Penarrochaâ Oltra, D., Gomarâ Vercher, S., Agustinâ Panadero, R., & Penarrochaâ Diago, M. ( 2016 ). Impact of crestal and subcrestal implant placement in periâ implant bone: A prospective comparative study. Medicina Oral Patología Oral Y Cirugia Bucal, 21 ( 1 ), e103 â e110. https://doi.org/10.4317/medoral.20747
dc.identifier.citedreferencePerussolo, J., Souza, A. B., Matarazzo, F., Oliveira, R. P., & Araujo, M. G. ( 2018 ). Influence of the keratinized mucosa on the stability of periâ implant tissues and brushing discomfort: A 4â year followâ up study. Clinical Oral Implants Research, 29 ( 12 ), 1177 â 1185. https://doi.org/10.1111/clr.13381
dc.identifier.citedreferencePico, A., Martinâ Lancharro, P., Caneiro, L., Novoa, L., Batalla, P., & Blanco, J. ( 2019 ). Influence of abutment height and implant depth position on interproximal periâ implant bone in sites with thin mucosa: A 1â year randomized clinical trial. Clinical Oral Implants Research, 30 ( 7 ), 595 â 602. https://doi.org/10.1111/clr.13443
dc.identifier.citedreferencePistilli, R., Genova, T., Canullo, L., Faga, M. G., Terlizzi, M. E., Gribaudo, G., & Mussano, F. ( 2018 ). Effect of bioactivation on traditional surfaces and zirconium nitride: Adhesion and proliferation of preosteoblastic cells and bacteria. International Journal of Oral and Maxillofacial Implants, 33 ( 6 ), 1247 â 1254. https://doi.org/10.11607/jomi.6654
dc.identifier.citedreferencePontes, A. E., Ribeiro, F. S., da Silva, V. C., Margonar, R., Piattelli, A., Cirelli, J. A., & Marcantonio, E. Jr ( 2008 ). Clinical and radiographic changes around dental implants inserted in different levels in relation to the crestal bone, under different restoration protocols, in the dog model. Journal of Periodontology, 79 ( 3 ), 486 â 494. https://doi.org/10.1902/jop.2008.070145
dc.identifier.citedreferenceRavida, A., Wang, I. C., Barootchi, S., Askar, H., Tavelli, L., Gargalloâ Albiol, J., & Wang, H. L. ( 2019 ). Metaâ analysis of randomized clinical trials comparing clinical and patientâ reported outcomes between extraâ short (</=6 mm) and longer (>/=10 mm) implants. Journal of Clinical Periodontology, 46 ( 1 ), 118 â 142. https://doi.org/10.1111/jcpe.13026
dc.identifier.citedreferenceRenvert, S., Persson, G. R., Pirih, F. Q., & Camargo, P. M. ( 2018 ). Periâ implant health, periâ implant mucositis, and periâ implantitis: Case definitions and diagnostic considerations. Journal of Clinical Periodontology, 45 ( Suppl 20 ), S278 â S285. https://doi.org/10.1111/jcpe.12956
dc.identifier.citedreferenceRoccuzzo, M., Grasso, G., & Dalmasso, P. ( 2016 ). Keratinized mucosa around implants in partially edentulous posterior mandible: 10â year results of a prospective comparative study. Clinical Oral Implants Research, 27 ( 4 ), 491 â 496. https://doi.org/10.1111/clr.12563
dc.identifier.citedreferenceRomanos, G. E., Aydin, E., Gaertner, K., & Nentwig, G. H. ( 2015 ). Longâ term results after subcrestal or crestal placement of delayed loaded implants. Clinical Implant Dentistry and Related Research, 17 ( 1 ), 133 â 141. https://doi.org/10.1111/cid.12084
dc.identifier.citedreferenceRompen, E. ( 2012 ). The impact of the type and configuration of abutments and their (repeated) removal on the attachment level and marginal bone. European Journal of Oral Implantology, 5 ( Suppl ), S83 â S90.
dc.identifier.citedreferenceSaleh, M. H. A., Ravida, A., Suarezâ Lopez Del Amo, F., Lin, G. H., Asa’ad, F., & Wang, H. L. ( 2018 ). The effect of implantâ abutment junction position on crestal bone loss: A systematic review and metaâ analysis. Clinical Implant Dentistry and Related Research, 20 ( 4 ), 617 â 633. https://doi.org/10.1111/cid.12600
dc.identifier.citedreferenceSchwarz, F., Becker, K., Sahm, N., Horstkemper, T., Rousi, K., & Becker, J. ( 2017 ). The prevalence of periâ implant diseases for twoâ piece implants with an internal tubeâ inâ tube connection: A crossâ sectional analysis of 512 implants. Clinical Oral Implants Research, 28 ( 1 ), 24 â 28. https://doi.org/10.1111/clr.12609
dc.identifier.citedreferenceSpinato, S., Stacchi, C., Lombardi, T., Bernardello, F., Messina, M., & Zaffe, D. ( 2019 ). Biological width establishment around dental implants is influenced by abutment height irrespective of vertical mucosal thickness: A cluster randomized controlled trial. Clinical Oral Implants Research, 30 ( 7 ), 649 â 659. https://doi.org/10.1111/clr.13450
dc.identifier.citedreferenceTarnow, D. P., Cho, S. C., & Wallace, S. S. ( 2000 ). The effect of interâ implant distance on the height of interâ implant bone crest. Journal of Periodontology, 71 ( 4 ), 546 â 549. https://doi.org/10.1902/jop.2000.71.4.546
dc.identifier.citedreferenceTenenbaum, H., Schaaf, J. F., & Cuisinier, F. J. ( 2003 ). Histological analysis of the Ankylos periâ implant soft tissues in a dog model. Implant Dentistry, 12 ( 3 ), 259 â 265. https://doi.org/10.1097/01.ID.0000075720.78252.54
dc.identifier.citedreferenceTeughels, W., Van Assche, N., Sliepen, I., & Quirynen, M. ( 2006 ). Effect of material characteristics and/or surface topography on biofilm development. Clinical Oral Implants Research, 17 ( Suppl 2 ), 68 â 81. https://doi.org/10.1111/j.1600-0501.2006.01353.x
dc.identifier.citedreferenceThome, E., Lee, H. J., de Mattias Sartori, I. A., Trevisan, R. L., Luiz, J., & Tiossi, R. ( 2015 ). A randomized controlled trial comparing interim acrylic prostheses with and without cast metal base for immediate loading of dental implants in the edentulous mandible. Clinical Oral Implants Research, 26 ( 12 ), 1414 â 1420. https://doi.org/10.1111/clr.12470
dc.identifier.citedreferencevan Eekeren, P., van Elsas, P., Tahmaseb, A., & Wismeijer, D. ( 2017 ). The influence of initial mucosal thickness on crestal bone change in similar macrogeometrical implants: A prospective randomized clinical trial. Clinical Oral Implants Research, 28 ( 2 ), 214 â 218. https://doi.org/10.1111/clr.12784
dc.identifier.citedreferenceVervaeke, S., Matthys, C., Nassar, R., Christiaens, V., Cosyn, J., & De Bruyn, H. ( 2018 ). Adapting the vertical position of implants with a conical connection in relation to soft tissue thickness prevents early implant surface exposure: A 2â year prospective intraâ subject comparison. Journal of Clinical Periodontology, 45 ( 5 ), 605 â 612. https://doi.org/10.1111/jcpe.12871
dc.identifier.citedreferenceWeng, D., Nagata, M. J., Bell, M., Bosco, A. F., de Melo, L. G., & Richter, E. J. ( 2008 ). Influence of microgap location and configuration on the periimplant bone morphology in submerged implants. An experimental study in dogs. Clinical Oral Implants Research, 19 ( 11 ), 1141 â 1147. https://doi.org/10.1111/j.1600-0501.2008.01564.x
dc.identifier.citedreferenceWeng, D., Nagata, M. J., Bosco, A. F., & de Melo, L. G. ( 2011 ). Influence of microgap location and configuration on radiographic bone loss around submerged implants: An experimental study in dogs. International Journal of Oral and Maxillofacial Implants, 26 ( 5 ), 941 â 946.
dc.identifier.citedreferenceWeng, D., Nagata, M. J., Leite, C. M., de Melo, L. G., & Bosco, A. F. ( 2011 ). Influence of microgap location and configuration on radiographic bone loss in nonsubmerged implants: An experimental study in dogs. The International Journal of Prosthodontics, 24 ( 5 ), 445 â 452.
dc.identifier.citedreferenceAl Amri, M. D., Alâ Johany, S. S., Al Baker, A. M., Al Rifaiy, M. Q., Abduljabbar, T. S., & Alâ Kheraif, A. A. ( 2017 ). Soft tissue changes and crestal bone loss around platformâ switched implants placed at crestal and subcrestal levels: 36â month results from a prospective splitâ mouth clinical trial. Clinical Oral Implants Research, 28 ( 11 ), 1342 â 1347. https://doi.org/10.1111/clr.12990
dc.identifier.citedreferenceAtieh, M. A., Tawseâ Smith, A., Alsabeeha, N. H. M., Ma, S., & Duncan, W. J. ( 2017 ). The one abutmentâ one time protocol: A systematic review and metaâ analysis. Journal of Periodontology, 88 ( 11 ), 1173 â 1185. https://doi.org/10.1902/jop.2017.170238
dc.identifier.citedreferenceBarros, R. R., Novaes, A. B. Jr, Muglia, V. A., Iezzi, G., & Piattelli, A. ( 2010 ). Influence of interimplant distances and placement depth on periâ implant bone remodeling of adjacent and immediately loaded Morse cone connection implants: A histomorphometric study in dogs. Clinical Oral Implants Research, 21 ( 4 ), 371 â 378. https://doi.org/10.1111/j.1600-0501.2009.01860.x
dc.identifier.citedreferenceBerglundh, T., Armitage, G., Araujo, M. G., Avilaâ Ortiz, G., Blanco, J., Camargo, P. M., â ¦ Zitzmann, N. ( 2018 ). Periâ implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Periâ Implant Diseases and Conditions. Journal of Clinical Periodontology, 45 ( Suppl 20 ), S286 â S291. https://doi.org/10.1111/jcpe.12957
dc.identifier.citedreferenceBerglundh, T., & Lindhe, J. ( 1996 ). Dimension of the periimplant mucosa. Journal of Clinical Periodontology, 23 ( 10 ), 971 â 973. https://doi.org/10.1111/j.1600-051X.1996.tb00520.x
dc.identifier.citedreferenceBonino, F., Steffensen, B., Natto, Z., Hur, Y., Holtzman, L. P., & Weber, H. P. ( 2018 ). Prospective study of the impact of periâ implant soft tissue properties on patientâ reported and clinically assessed outcomes. Journal of Periodontology, 89 ( 9 ), 1025 â 1032. https://doi.org/10.1002/JPER.18-0031
dc.identifier.citedreferenceBorges, A. F., Dias Pereira, L. A., Thome, G., Melo, A. C., & de Mattias Sartori, I. A. ( 2010 ). Prostheses removal for suture removal after immediate load: Success of implants. Clinical Implant Dentistry and Related Research, 12 ( 3 ), 244 â 248. https://doi.org/10.1111/j.1708-8208.2009.00157.x
dc.identifier.citedreferenceBroggini, N., McManus, L. M., Hermann, J. S., Medina, R. U., Oates, T. W., Schenk, R. K., â ¦ Cochran, D. L. ( 2003 ). Persistent acute inflammation at the implantâ abutment interface. Journal of Dental Research, 82 ( 3 ), 232 â 237. https://doi.org/10.1177/154405910308200316
dc.identifier.citedreferenceBrunner, E., Domhof, S., & Langer, F. ( 2002 ). Nonâ parametric analysis of longitudinal data in factorial experiments. New York, NY: J. Wiley.
dc.identifier.citedreferenceCanullo, L., Bignozzi, I., Cocchetto, R., Cristalli, M. P., & Iannello, G. ( 2010 ). Immediate positioning of a definitive abutment versus repeated abutment replacements in postâ extractive implants: 3â year followâ up of a randomised multicentre clinical trial. European Journal of Oral Implantology, 3 ( 4 ), 285 â 296.
dc.identifier.citedreferenceCanullo, L., Camachoâ Alonso, F., Tallarico, M., Meloni, S. M., Xhanari, E., & Penarrochaâ Oltra, D. ( 2017 ). Mucosa thickness and periâ implant crestal bone stability: A clinical and histologic prospective cohort trial. International Journal of Oral and Maxillofacial Implants, 32 ( 5 ), 675 â 681. https://doi.org/10.11607/jomi.5349
dc.identifier.citedreferenceCastro, D. S., Araujo, M. A., Benfatti, C. A., Araujo Cdos, R., Piattelli, A., Perrotti, V., & Iezzi, G. ( 2014 ). Comparative histological and histomorphometrical evaluation of marginal bone resorption around external hexagon and Morse cone implants: An experimental study in dogs. Implant Dentistry, 23 ( 3 ), 270 â 276. https://doi.org/10.1097/ID.0000000000000089
dc.identifier.citedreferenceCosyn, J., Sabzevar, M. M., & De Bruyn, H. ( 2012 ). Predictors of interâ proximal and midfacial recession following single implant treatment in the anterior maxilla: A multivariate analysis. Journal of Clinical Periodontology, 39 ( 9 ), 895 â 903. https://doi.org/10.1111/j.1600-051X.2012.01921.x
dc.identifier.citedreferencede Mattias Sartori, I. A., da Silveira Junior, C. D., Fontao, F. N., & da Gloria Chiarello de Mattos, M. ( 2014 ). Evaluation of radiographic technique using a new customized film holder for dental implant assessment. Implant Dentistry, 23 ( 1 ), 13 â 17. https://doi.org/10.1097/ID.0000000000000010
dc.identifier.citedreferencede Siqueira, R. A. C., Fontao, F., de Mattias Sartori, I. A., Santos, P. G. F., Bernardes, S. R., & Tiossi, R. ( 2017 ). Effect of different implant placement depths on crestal bone levels and soft tissue behavior: A randomized clinical trial. Clinical Oral Implants Research, 28 ( 10 ), 1227 â 1233. https://doi.org/10.1111/clr.12946
dc.identifier.citedreferenceDegidi, M., Nardi, D., & Piattelli, A. ( 2011 ). One abutment at one time: Nonâ removal of an immediate abutment and its effect on bone healing around subcrestal tapered implants. Clinical Oral Implants Research, 22 ( 11 ), 1303 â 1307. https://doi.org/10.1111/j.1600-0501.2010.02111.x
dc.identifier.citedreferenceD’Ercole, S., Tripodi, D., Ravera, L., Perrotti, V., Piattelli, A., & Iezzi, G. ( 2014 ). Bacterial leakage in Morse Cone internal connection implants using different torque values: An in vitro study. Implant Dentistry, 23 ( 2 ), 175 â 179. https://doi.org/10.1097/ID.0000000000000044
dc.identifier.citedreferenceDerks, J., Schaller, D., Hakansson, J., Wennstrom, J. L., Tomasi, C., & Berglundh, T. ( 2016 ). Effectiveness of implant therapy analyzed in a Swedish population: Prevalence of periâ implantitis. Journal of Dental Research, 95 ( 1 ), 43 â 49. https://doi.org/10.1177/0022034515608832
dc.identifier.citedreferenceDerks, J., & Tomasi, C. ( 2015 ). Periâ implant health and disease. A systematic review of current epidemiology. Journal of Clinical Periodontology, 42, S158 â S171. https://doi.org/10.1111/jcpe.12334
dc.identifier.citedreferenceFetner, M., Fetner, A., Koutouzis, T., Clozza, E., Tovar, N., Sarendranath, A., â ¦ Neiva, R. ( 2015 ). The effects of subcrestal implant placement on crestal bone levels and boneâ toâ abutment contact: A microcomputed tomographic and histologic study in dogs. International Journal of Oral and Maxillofacial Implants, 30 ( 5 ), 1068 â 1075. https://doi.org/10.11607/jomi.4043
dc.identifier.citedreferenceFrench, D., Grandin, H. M., & Ofec, R. ( 2019 ). Retrospective cohort study of 4,591 dental implants: Analysis of risk indicators for bone loss and prevalence of periâ implant mucositis and periâ implantitis. Journal of Periodontology, 90 ( 7 ), 691 â 700. https://doi.org/10.1002/JPER.18-0236
dc.identifier.citedreferenceFu, J. H., Lee, A., & Wang, H. L. ( 2011 ). Influence of tissue biotype on implant esthetics. International Journal of Oral and Maxillofacial Implants, 26 ( 3 ), 499 â 508.
dc.identifier.citedreferenceGalindoâ Moreno, P., Leonâ Cano, A., Monje, A., Ortegaâ Oller, I., O’Valle, F., & Catena, A. ( 2016 ). Abutment height influences the effect of platform switching on periâ implant marginal bone loss. Clinical Oral Implants Research, 27 ( 2 ), 167 â 173. https://doi.org/10.1111/clr.12554
dc.identifier.citedreferenceGrischke, J., Karch, A., Wenzlaff, A., Foitzik, M. M., Stiesch, M., & Eberhard, J. ( 2019 ). Keratinized mucosa width is associated with severity of periâ implant mucositis. A crossâ sectional study. Clinical Oral Implants Research, 30 ( 5 ), 457 â 465. https://doi.org/10.1111/clr.13432
dc.identifier.citedreferenceGualini, F., Salina, S., Rigotti, F., Mazzarini, C., Longhin, D., Grigoletto, M., â ¦ Esposito, M. ( 2017 ). Subcrestal placement of dental implants with an internal conical connection of 0.5 mm versus 1.5 mm: Outcome of a multicentre randomised controlled trial 1 year after loading. European Journal of Oral Implantology, 10 ( 1 ), 73 â 82.
dc.identifier.citedreferenceHermann, J. S., Cochran, D. L., Nummikoski, P. V., & Buser, D. ( 1997 ). Crestal bone changes around titanium implants. A radiographic evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. Journal of Periodontology, 68 ( 11 ), 1117 â 1130. https://doi.org/10.1902/jop.1997.68.11.1117
dc.identifier.citedreferenceKan, J. Y., Rungcharassaeng, K., Umezu, K., & Kois, J. C. ( 2003 ). Dimensions of periâ implant mucosa: An evaluation of maxillary anterior single implants in humans. Journal of Periodontology, 74 ( 4 ), 557 â 562. https://doi.org/10.1902/jop.2003.74.4.557
dc.identifier.citedreferenceKhorshidi, H., Raoofi, S., Moattari, A., Bagheri, A., & Kalantari, M. H. ( 2016 ). In vitro evaluation of bacterial leakage at implantâ abutment connection: An 11â degree Morse taper compared to a butt joint connection. International Journal of Biomaterials, 2016, 8527849. https://doi.org/10.1155/2016/8527849
dc.identifier.citedreferenceKoh, R. U., Oh, T. J., Rudek, I., Neiva, G. F., Misch, C. E., Rothman, E. D., & Wang, H. L. ( 2011 ). Hard and soft tissue changes after crestal and subcrestal immediate implant placement. Journal of Periodontology, 82 ( 8 ), 1112 â 1120. https://doi.org/10.1902/jop.2011.100541
dc.identifier.citedreferenceKoutouzis, T., Neiva, R., Nair, M., Nonhoff, J., & Lundgren, T. ( 2014 ). Cone beam computed tomographic evaluation of implants with platformâ switched Morse taper connection with the implantâ abutment interface at different levels in relation to the alveolar crest. International Journal of Oral and Maxillofacial Implants, 29 ( 5 ), 1157 â 1163. https://doi.org/10.11607/jomi.3411
dc.identifier.citedreferenceLazzara, R. J., & Porter, S. S. ( 2006 ). Platform switching: A new concept in implant dentistry for controlling postrestorative crestal bone levels. International Journal of Periodontics & Restorative Dentistry, 26 ( 1 ), 9 â 17.
dc.identifier.citedreferenceLee, H. J., de Mattias Sartori, A. I., Alcantara, P. R., Vieira, R. A., Suzuki, D., Gasparini Kiatake Fontão, F., & Tiossi, R. ( 2012 ). Implant stability measurements of two immediate loading protocols for the edentulous mandible: Rigid and semiâ rigid splinting of the implants. Implant Dentistry, 21 ( 6 ), 486 â 490. https://doi.org/10.1097/ID.0b013e31826b1c68
dc.identifier.citedreferenceLin, G. H., Chan, H. L., & Wang, H. L. ( 2013 ). The significance of keratinized mucosa on implant health: A systematic review. Journal of Periodontology, 84 ( 12 ), 1755 â 1767. https://doi.org/10.1902/jop.2013.120688
dc.identifier.citedreferenceLinkevicius, T., Apse, P., Grybauskas, S., & Puisys, A. ( 2009 ). The influence of soft tissue thickness on crestal bone changes around implants: A 1â year prospective controlled clinical trial. International Journal of Oral and Maxillofacial Implants, 24 ( 4 ), 712 â 719.
dc.identifier.citedreferenceLinkevicius, T., Apse, P., Grybauskas, S., & Puisys, A. ( 2010 ). Influence of thin mucosal tissues on crestal bone stability around implants with platform switching: A 1â year pilot study. Journal of Oral and Maxillofacial Surgery, 68 ( 9 ), 2272 â 2277. https://doi.org/10.1016/j.joms.2009.08.018
dc.identifier.citedreferenceLinkevicius, T., Linkevicius, R., Alkimavicius, J., Linkeviciene, L., Andrijauskas, P., & Puisys, A. ( 2018 ). Influence of titanium base, lithium disilicate restoration and vertical soft tissue thickness on bone stability around triangularâ shaped implants: A prospective clinical trial. Clinical Oral Implants Research, 29 ( 7 ), 716 â 724. https://doi.org/10.1111/clr.13263
dc.identifier.citedreferenceLinkevicius, T., Puisys, A., Steigmann, M., Vindasiute, E., & Linkeviciene, L. ( 2015 ). Influence of vertical soft tissue thickness on crestal bone changes around implants with platform switching: A comparative clinical study. Clinical Implant Dentistry and Related Research, 17 ( 6 ), 1228 â 1236. https://doi.org/10.1111/cid.12222
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.