Show simple item record

Rapid actin‐cytoskeleton–dependent recruitment of plasma membrane–derived dysferlin at wounds is critical for muscle membrane repair

dc.contributor.authorMcDade, Joel R.
dc.contributor.authorArchambeau, Ashley
dc.contributor.authorMichele, Daniel E.
dc.date.accessioned2020-03-17T18:28:30Z
dc.date.available2020-03-17T18:28:30Z
dc.date.issued2014-08
dc.identifier.citationMcDade, Joel R.; Archambeau, Ashley; Michele, Daniel E. (2014). "Rapid actin‐cytoskeleton–dependent recruitment of plasma membrane–derived dysferlin at wounds is critical for muscle membrane repair." The FASEB Journal 28(8): 3660-3670.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154309
dc.publisherThe Federation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherendocytosis
dc.subject.otherpHluorin
dc.titleRapid actin‐cytoskeleton–dependent recruitment of plasma membrane–derived dysferlin at wounds is critical for muscle membrane repair
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154309/1/fsb2028008034.pdf
dc.identifier.doi10.1096/fj.14-250191
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceLek, A., Evesson, F. J., Lemckert, F. A., Redpath, G. M. I., Lueders, A.‐K., Turnbull, L., Whitchurch, C. B., North, K. N., and Cooper, S. T. ( 2013 ) Calpains, cleaved mini‐dysferlinC72, and L‐type channels underpin calcium‐dependent muscle membrane repair. J. Neurosci. 33, 5085 – 5094
dc.identifier.citedreferenceMatsuda, C., Hayashi, Y. K., Ogawa, M., Aoki, M., Murayama, K., Nishino, I., Nonaka, I., Arahata, K., and Brown, R. H., Jr. ( 2001 ) The sarcolemmal proteins dysferlin and caveolin‐3 interact in skeletal muscle. Hum. Mol. Genet. 10, 1761 – 1766
dc.identifier.citedreferenceHernández‐Deviez, D. J., Martin, S., Laval, S. H., Lo, H. P., Cooper, S. T., North, K. N., Bushby, K., and Parton, R. G. ( 2006 ) Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin‐3. Hum. Mol. Genet. 15, 129 – 142
dc.identifier.citedreferenceCai, C., Weisleder, N., Ko, J.‐K., Komazaki, S., Sunada, Y., Nishi, M., Takeshima, H., and Ma, J. ( 2009 ) Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin‐3, and dysferlin. J. Biol. Chem. 284, 15894 – 15902
dc.identifier.citedreferenceAnderson, L. V. B., Davison, K., Moss, J. A., Young, C., Cullen, M. J., Walsh, J., Johnson, M. A., Bashir, R., Britton, S., Keers, S., Argov, Z., Mahjneh, I., Fougerousse, F., Beckmann, J. S., and Bushby, K. M. D. ( 1999 ) Dysferlin is a plasma membrane protein and is expressed early in human development. Hum. Mol. Genet. 8, 855 – 861
dc.identifier.citedreferenceRoche, J. A., Ru, L. W., O’Neill, A. M., Resneck, W. G., Lovering, R. M., and Bloch, R. J. ( 2011 ) Unmasking potential intracellular roles for dysferlin through improved immunolabeling methods. J. Histochem. Cytochem. 59, 964 – 975
dc.identifier.citedreferenceDemonbreun, A. R., Rossi, A. E., Alvarez, M. G., Swanson, K. E., Deveaux, H. K., Earley, J. U., Hadhazy, M., Vohra, R., Walter, G. A., Pytel, P., and McNally, E. M. ( 2014 ) Dysferlin and myoferlin regulate transverse tubule formation and glycerol sensitivity. Am. J. Pathol. 184, 248 – 259
dc.identifier.citedreferenceKerr, J. P., Ziman, A. P., Mueller, A. L., Muriel, J. M., Kleinhans‐Welte, E., Gumerson, J. D., Vogel, S. S., Ward, C. W., Roche, J. A., and Bloch, R. J. ( 2013 ) Dysferlin stabilizes stress‐induced Ca2+ signaling in the transverse tubule membrane. Proc. Natl. Acad. Sci. U.S.A. 110, 20831 – 20836
dc.identifier.citedreferenceGlover, L. E., Newton, K., Krishnan, G., Bronson, R., Boyle, A., Krivickas, L. S., and Brown, R. H. ( 2010 ) Dysferlin overexpression in skeletal muscle produces a progressive myopathy. Ann. Neurol. 67, 384 – 393
dc.identifier.citedreferenceMandato, C. A., and Bement, W. M. ( 2001 ) Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J. Cell Biol. 154, 785 – 798
dc.identifier.citedreferenceTian, Q., Pahlavan, S., Oleinikow, K., Jung, J., Ruppenthal, S., Scholz, A., Schumann, C., Kraegeloh, A., Oberhofer, M., Lipp, P., and Kaestner, L. ( 2012 ) Functional and morphological preservation of adult ventricular myocytes in culture by submicromolar cytochalasin D supplement. J. Mol. Cell. Cardiol. 52, 113 – 124
dc.identifier.citedreferenceEddleman, C. S., Ballinger, M. L., Smyers, M. E., Godell, C. M., Fishman, H. M., and Bittner, G. D. ( 1997 ) Repair of plasmalemmal lesions by vesicles. Proc. Natl. Acad. Sci. U.S.A. 94, 4745 – 4750
dc.identifier.citedreferenceCorrotte, M., Almeida, P. E., Tam, C., Castro‐Gomes, T., Fernandes, M. C., Millis, B. A., Cortez, M., Miller, H., Song, W., Maugel, T. K., Andrews, N. W., and Pfeffer, S. R. ( 2013 ) Caveolae internalization repairs wounded cells and muscle fibers. eLife 2, e00926
dc.identifier.citedreferencePiccolo, F., Moore, S. A., Ford, G. C., and Campbell, K. P. ( 2000 ) Intracellular accumulation and reduced sarcolemmal expression of dysferlin in limb‐girdle muscular dystrophies. Ann. Neurol. 48, 902 – 912
dc.identifier.citedreferenceMoench, I., Meekhof, K. E., Cheng, L. F., and Lopatin, A. N. ( 2013 ) Resolution of hyposmotic stress in isolated mouse ventricular myocytes causes sealing of t‐tubules. Exp. Physiol. 98, 1164 – 1177
dc.identifier.citedreferenceWaddell, L. B., Lemckert, F. A., Zheng, X. F., Tran, J., Evesson, F. J., Hawkes, J. M., Lek, A., Street, N. E., Lin, P., Clarke, N. F., Landstrom, A. P., Ackerman, M. J., Weisleder, N., Ma, J., North, K. N., and Cooper, S. T. ( 2011 ) Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T‐system with stretch. J. Neuropathol. Exp. Neurol. 70, 302 – 313
dc.identifier.citedreferenceFuson, K., Rice, A., Mahling, R., Snow, A., Nayak, K., Shanbhogue, P., Meyer, Austin, G., Redpath, G. M. I., Hinderliter, A., Cooper, Sandra, T., and Sutton, R. B. ( 2014 ) Alternate splicing of dysferlin C2A confers Ca2+‐dependent and Ca2+‐independent binding for membrane repair. Structure 22, 104 – 115
dc.identifier.citedreferenceDavis, D. B., Doherty, K. R., Delmonte, A. J., and McNally, E. M. ( 2002 ) Calcium‐sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. J. Biol. Chem. 277, 22883 – 22888
dc.identifier.citedreferenceAzakir, B. A., Di Fulvio, S., Salomon, S., Brockhoff, M., Therrien, C., and Sinnreich, M. ( 2012 ) Modular dispensability of dysferlin C2 domains reveals rational design for mini‐dysferlin molecules. J. Biol. Chem. 287, 27629 – 27636
dc.identifier.citedreferenceLiu, J., Aoki, M., Illa, I., Wu, C., Fardeau, M., Angelini, C., Serrano, C., Urtizberea, J. A., Hentati, F., Hamida, M. B., Bohlega, S., Culper, E. J., Amato, A. A., Bossie, K., Oeltjen, J., Bejaoui, K., McKenna‐Yasek, D., Hosler, B. A., Schurr, E., Arahata, K., de Jong, P. J., and Brown, R. H. ( 1998 ) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 20, 31 – 36
dc.identifier.citedreferenceIllarioshkin, S. N., Ivanova‐Smolenskaya, I. A., Greenberg, C. R., Nylen, E., Sukhorukov, V. S., Poleshchuk, V. V., Markova, E. D., and Wrogemann, K. ( 2000 ) Identical dysferlin mutation in limb‐girdle muscular dystrophy type 2B and distal myopathy. Neurology 55, 1931 – 1933
dc.identifier.citedreferenceChiu, Y.‐H., Hornsey, M. A., Klinge, L., Jørgensen, L. H., Laval, S. H., Charlton, R., Barresi, R., Straub, V., Lochmüller, H., and Bushby, K. ( 2009 ) Attenuated muscle regeneration is a key factor in dysferlin‐deficient muscular dystrophy. Hum. Mol. Genet. 18, 1976 – 1989
dc.identifier.citedreferenceDemonbreun, A. R., Fahrenbach, J. P., Deveaux, K., Earley, J. U., Pytel, P., and McNally, E. M. ( 2011 ) Impaired muscle growth and response to insulin‐like growth factor 1 in dysferlin‐mediated muscular dystrophy. Hum. Mol. Genet. 20, 779 – 789
dc.identifier.citedreferenceDe Morree, A., Flix, B., Bagaric, I., Wang, J., van den Boogaard, M., Grand Moursel, L., Frants, R. R., Illa, I., Gallardo, E., Toes, R., and van der Maarel, S. M. ( 2013 ) Dysferlin regulates cell adhesion in human monocytes. J. Biol. Chem.
dc.identifier.citedreferenceSharma, A., Yu, C., Leung, C., Trane, A., Lau, M., Utokaparch, S., Shaheen, F., Sheibani, N., and Bernatchez, P. ( 2010 ) Anew role for the muscle repair protein dysferlin in endothelial cell adhesion and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 30, 2196 – 2204
dc.identifier.citedreferenceBansal, D., Miyake, K., Vogel, S. S., Groh, S., Chen, C.‐C., Williamson, R., McNeil, P. L., and Campbell, K. P. ( 2003 ) Defective membrane repair in dysferlin‐deficient muscular dystrophy. Nature 423, 168 – 172
dc.identifier.citedreferenceHan, R., Bansal, D., Miyake, K., Muniz, V. P., Weiss, R. M., McNeil, P. L., and Campbell, K. P. ( 2007 ) Dysferlin‐mediated membrane repair protects the heart from stress‐induced left ventricular injury. J. Clin. Invest. 117, 1805 – 1813
dc.identifier.citedreferenceReddy, A., Caler, E. V., and Andrews, N. W. ( 2001 ) Plasma membrane repair is mediated by Ca2+‐regulated exocytosis of lysosomes. Cell 106, 157 – 169
dc.identifier.citedreferenceBi, G. Q., Alderton, J. M., and Steinhardt, R. A. ( 1995 ) Calcium‐regulated exocytosis is required for cell membrane resealing. J. Cell Biol. 131, 1747 – 1758
dc.identifier.citedreferenceTerasaki, M., Miyake, K., and McNeil, P. L. ( 1997 ) Large plasma membrane disruptions are rapidly resealed by Ca2+‐dependent vesicle‐vesicle fusion events. J. Cell Biol. 139, 63 – 74
dc.identifier.citedreferenceLapidos, K. A., Kakkar, R., and McNally, E. M. ( 2004 ) The Dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ. Res. 94, 1023 – 1031
dc.identifier.citedreferenceCai, C., Masumiya, H., Weisleder, N., Matsuda, N., Nishi, M., Hwang, M., Ko, J.‐K., Lin, P., Thornton, A., Zhao, X., Pan, Z., Komazaki, S., Brotto, M., Takeshima, H., and Ma, J. ( 2009 ) MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol. 11, 56 – 64
dc.identifier.citedreferenceLennon, N. J., Kho, A., Bacskai, B. J., Perlmutter, S. L., Hyman, B. T., and Brown, R. H. ( 2003 ) Dysferlin Interacts with annexins A1 and A2 and mediates sarcolemmal wound‐healing. J. Biol. Chem. 278, 50466 – 50473
dc.identifier.citedreferenceRoostalu, U., and Strähle, U. ( 2012 ) In vivo imaging of molecular interactions at damaged sarcolemma. Dev. Cell. 22, 515 – 529
dc.identifier.citedreferenceSteinhardt, R., Bi, G., and Alderton, J. ( 1994 ) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263, 390 – 393
dc.identifier.citedreferenceMiesenbock, G., De Angelis, D. A., and Rothman, J. E. ( 1998 ) Visualizing secretion and synaptic transmission with pH‐sensitive green fluorescent proteins. Nature 394, 192 – 195
dc.identifier.citedreferenceHauser, M., Robinson, A., Hartigan‐O’Connor, Williams‐Gregory, D., Buskin, J. N., Apone, S., Kirk, C. J., Hardy, S., Hauschka, S. D., and Chamberlain, J. S. ( 2000 ) Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol. Ther. 2, 16 – 25
dc.identifier.citedreferenceBecker, K., and Jerchow, B. ( 2011 ) Generation of transgenic mice by pronuclear microinjection. In Advanced Protocols for Animal Transgenesis ( Pease, S., and Saunders, T. L., eds) pp. 99 – 115, Springer, Berlin/Heidelberg
dc.identifier.citedreferenceGumerson, J. D., Kabaeva, Z. T., Davis, C. S., Faulkner, J. A., and Michele, D. E. ( 2010 ) Soleus muscle in glycosylation‐deficient muscular dystrophy is protected from contraction‐induced injury. Am. J. Psysiol. Cell Physiol. 299, C1430 – C1440
dc.identifier.citedreferenceShefer, G., and, Yablonka‐Reuveni, Z. ( 2005 ) Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol. Biol. 290, 281 – 304
dc.identifier.citedreferenceBurrone, J., Li, Z., and Murthy, V. N. ( 2007 ) Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin. Nat. Protoc. 1, 2970 – 2978
dc.identifier.citedreferenceSankaranarayanan, S., De Angelis, D., Rothman, J. E., and Ryan, T. A. ( 2000 ) The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79, 2199 – 2208
dc.identifier.citedreferenceMcDade, J. R., and Michele, D. E. ( 2013 ) Membrane damage‐induced vesicle‐vesicle fusion of dysferlin‐containing vesicles in muscle cells requires microtubules and kinesin. Hum. Mol. Genet.
dc.identifier.citedreferenceAbreu‐Blanco, M. T., Verboon, J. M., and Parkhurst, S. M. ( 2011 ) Cell wound repair in Drosophila occurs through three distinct phases of membrane and cytoskeletal remodeling. J. Cell Biol. 193, 455 – 464
dc.identifier.citedreferenceFletcher, D. A., and Mullins, R. D. ( 2010 ) Cell mechanics and the cytoskeleton. Nature 463, 485 – 492
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.