Show simple item record

Urban Seismic Site Characterization by Fiber‐Optic Seismology

dc.contributor.authorSpica, Zack J.
dc.contributor.authorPerton, Mathieu
dc.contributor.authorMartin, Eileen R.
dc.contributor.authorBeroza, Gregory C.
dc.contributor.authorBiondi, Biondo
dc.date.accessioned2020-03-17T18:28:33Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:28:33Z
dc.date.issued2020-03
dc.identifier.citationSpica, Zack J.; Perton, Mathieu; Martin, Eileen R.; Beroza, Gregory C.; Biondi, Biondo (2020). "Urban Seismic Site Characterization by Fiber‐Optic Seismology." Journal of Geophysical Research: Solid Earth 125(3): n/a-n/a.
dc.identifier.issn2169-9313
dc.identifier.issn2169-9356
dc.identifier.urihttps://hdl.handle.net/2027.42/154310
dc.description.abstractAccurate ground motion prediction requires detailed site effect assessment, but in urban areas where such assessments are most important, geotechnical surveys are difficult to perform, limiting their availability. Distributed acoustic sensing (DAS) offers an appealing alternative by repurposing existing fiber‐optic cables, normally employed for telecommunication, as an array of seismic sensors. We present a proof‐of‐concept demonstration by using DAS to produce high‐resolution maps of the shallow subsurface with the Stanford DAS array, California. We describe new methods and their assumptions to assess H/V spectral ratio—a technique widely used to estimate the natural frequency of the soil—and to extract Rayleigh wave dispersion curves from ambient seismic field. These measurements are jointly inverted to provide models of shallow seismic velocities and sediment thicknesses above bedrock in central campus. The good agreement with an independent survey validates the methodology and demonstrates the power of DAS for microzonation.Key PointsWe demonstrate the potential of DAS for site effect analysisDAS recordings are used to compute dispersion curves and horizontal‐to‐vertical spectral ratio (HVSR)Joint inversions suggest that the crystalline bedrock lies 115 m beneath Stanford University central campus
dc.publisherAA Balkema
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdistributed acoustic sensing
dc.subject.otherHVSR
dc.subject.otherambient noise
dc.subject.othersite effect
dc.subject.othermicrozonation
dc.titleUrban Seismic Site Characterization by Fiber‐Optic Seismology
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154310/1/jgrb54043.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154310/2/jgrb54043-sup-0001-Text_SI-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154310/3/jgrb54043_am.pdf
dc.identifier.doi10.1029/2019JB018656
dc.identifier.sourceJournal of Geophysical Research: Solid Earth
dc.identifier.citedreferenceSladen, A., Rivet, D., Ampuero, J.‐P., Hello, Y., Calbris, G., & Lamare, P. ( 2019 ). Distributed sensing of earthquakes and ocean‐solid earth interactions on seafloor telecom cables. Nature Communications, 10, 5777.  https://doi.org/10.1038/s41467-019-13793-z
dc.identifier.citedreferencePerton, M., Spica, Z. J., Clayton, R. W., & Beroza, G. C. ( 2019 ). Shear wave structure of a transect of the los Angeles basin from multimode surface waves and H/V spectral ratio analysis. Geophysical Journal International, 220 ( 1 ), 415 – 427.  https://doi.org/10.1093/gji/ggz458
dc.identifier.citedreferencePiña‐Flores, J., Perton, M., García‐Jerez, A., Carmona, E., Luzón, F., Molina‐Villegas, J. C., & Sánchez‐Sesma, F. J. ( 2016 ). The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA). Geophysical Journal International, 208, 577 – 588.
dc.identifier.citedreferencePicozzi, M., Parolai, S., & Richwalski, S. ( 2005 ). Joint inversion of H/V ratios and dispersion curves from seismic noise: Estimating the S‐wave velocity of bedrock. Geophysical Research Letters, 32, L11308. https:doi.org/10.1029/2005GL022878
dc.identifier.citedreferenceRivet, D., Campillo, M., Sanchez‐Sesma, F., Shapiro, N. M., & Singh, S. K. ( 2015 ). Identification of surface wave higher modes using a methodology based on seismic noise and coda waves. Geophysical Journal International, 203 ( 2 ), 856 – 868.
dc.identifier.citedreferenceSalinas, V., Luzón, F., García‐Jerez, A., Sánchez‐Sesma, F., Kawase, H., Matsushima, S., Suarez, M., Cuellar, A., & Campillo, M. ( 2014 ). Using diffuse field theory to interpret the H/V spectral ratio from earthquake records in Cibeles seismic station, Mexico City. Bulletin of the Seismological Society of America, 104 ( 2 ), 995 – 1001.
dc.identifier.citedreferenceSánchez‐Sesma, F., Pérez‐Rocha, L., & Reinoso, E. ( 1993 ). Ground motion in mexico city during the april 25, 1989, Guerrero earthquake. Tectonophysics, 218 ( 1‐3 ), 127 – 140.
dc.identifier.citedreferenceSánchez‐Sesma, F. J., Rodríguez, M., Iturrarán‐Viveros, U., Luzón, F., Campillo, M., Margerin, L., García‐Jerez, A., Suarez, M., Santoyo, M. A., & Rodríguez‐Castellanos, A. ( 2011 ). A theory for microtremor H/V spectral ratio: Application for a layered medium. Geophysical Journal International, 186 ( 1 ), 221 – 225.
dc.identifier.citedreferenceScherbaum, F., Hinzen, K.‐G., & Ohrnberger, M. ( 2003 ). Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophysical Journal International, 152 ( 3 ), 597 – 612.
dc.identifier.citedreferenceShapiro, N. M., & Campillo, M. ( 2004 ). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31, L07614. https:doi.org/10.1029/2004GL019491
dc.identifier.citedreferenceSpica, Z., Caudron, C., Perton, M., Lecocq, T., Camelbeeck, T., Legrand, D., Piña‐Flores, J., Iglesias, A., & Syahbana, D. K. ( 2015 ). Velocity models and site effects at Kawah Ijen volcano and Ijen caldera (Indonesia) determined from ambient noise cross‐correlations and directional energy density spectral ratios. Journal of Volcanology and Geothermal Research, 302, 173 – 189.  https://doi.org/10.1016/j.jvolgeores.2015.06.016
dc.identifier.citedreferenceSpica, Z., Perton, M., Calò, M., Legrand, D., Córdoba‐Montiel, F., & Iglesias, A. ( 2016 ). 3‐D shear wave velocity model of Mexico and south US: bridging seismic networks with ambient noise cross‐correlations ( C 1 ) and correlation of coda of correlations ( C 3 ). Geophysical Journal International, 206 ( 3 ), 1795 – 1813.  https://doi.org/10.1093/gji/ggw240
dc.identifier.citedreferenceSpica, Z. J., Perton, M., Martin, E. R., Beroza, G. C., & Biondi, B. ( 2019 ). Dataset used in “urban seismic site characterization by fiber‐optic seismology” by Spica et al. in Journal of Geophysical Research: Solid Earth. http://doi.org/10.5281/zenodo.3549085
dc.identifier.citedreferenceSpica, Z. J., Perton, M., Nakata, N., Liu, X., & Beroza, G. C. ( 2017 ). Site characterization at Groningen gas field area through joint surface‐borehole H/V analysis. Geophysical Journal International, 212 ( 1 ), 412 – 421. https://doi.org/10.1093/gji/ggx426
dc.identifier.citedreferenceSpica, Z., Perton, M., Nakata, N., Liu, X., & Beroza, G. C. ( 2018 ). Shallow V s imaging of the Groningen area from joint inversion of multimode surface waves and H/V spectral ratios. Seismological Research Letters, 89 ( 5 ), 1720 – 1729.  https://doi.org/10.1785/0220180060
dc.identifier.citedreferenceStanko, D., Markušic, S., Strelec, S., & Gazdek, M. ( 2017 ). HVSR analysis of seismic site effects and soil‐structure resonance in Varaždin city (North Croatia). Soil Dynamics and Earthquake Engineering, 92, 666 – 677.
dc.identifier.citedreferenceThomas, A. M., Spica, Z., Bodmer, M., Schulz, W. H., & Roering, J. J. ( 2019 ). Using a dense seismic array to determine structure and site effects of the two towers earthflow in northern California. Seismological Research Letters.  https://doi.org/10.1785/0220190206
dc.identifier.citedreferenceThomas, P., Wong, I., Zachariasen, J., Darragh, R., & Silva, W. ( 2014 ). 2013 Update to the sites‐pecific seismic hazard analyses and development of seismic design ground motions (Tech. Rep.). California: Stanford University.
dc.identifier.citedreferenceTumurbaatar, Z., Miura, H., & Tsamba, T. ( 2019 ). Site effect assessment in Ulaanbaatar, Mongolia through inversion analysis of microtremor H/V spectral ratios. Geosciences, 9 ( 5 ), 228.
dc.identifier.citedreferenceUSGS ( 2016 ). U.S. Geological Survey Networks. International Federation of Digital Seismograph Networks: Dataset/Seismic Network.  https:doi.org/10.7914/sn/gm
dc.identifier.citedreferenceWang, H. F., Zeng, X., Miller, D. E., Fratta, D., Feigl, K. L., Thurber, C. H., & Mellors, R. J. ( 2018 ). Ground motion response to an ml 4.3 earthquake using co‐located distributed acoustic sensing and seismometer arrays. Geophysical Journal International, 213 ( 3 ), 2020 – 2036.
dc.identifier.citedreferenceWebster, P., Wall, J., Perkins, C., & Molenaar, M. ( 2013 ). Micro‐seismic detection using distributed acoustic sensing. In SEG Technical Program Expanded Abstracts 2013 (pp. 2459 – 2463 ). https://doi.org/10.1190/segam2013-0182.1
dc.identifier.citedreferenceWitter, R. C., Knudsen, K. L., Sowers, J. M., Wentworth, C. M., Koehler, R. D., Randolph, C. E., Brooks, S. K., & Gans, K. D. ( 2006 ). Maps of quaternary deposits and liquefaction susceptibility in the central San Francisco Bay Region, California (Technical Report): U. S. Geological Survey.
dc.identifier.citedreferenceYu, C., Zhan, Z., Lindsey, N. J., Ajo‐Franklin, J. B., & Robertson, M. ( 2019 ). The potential of DAS in teleseismic studies: Insights from the goldstone experiment. Geophysical Research Letters, 46, 1320 – 1328. https:doi.org/10.1029/2018GL081195
dc.identifier.citedreferenceZeng, X., Lancelle, C., Thurber, C., Fratta, D., Wang, H., Lord, N., Chalari, A., & Clarke, A. ( 2017 ). Properties of noise cross‐correlation functions obtained from a distributed acoustic sensing array at Garner Valley, California. Bulletin of the Seismological Society of America, 107 ( 2 ), 603 – 610.
dc.identifier.citedreferenceAjo‐Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., Tribaldos, V. R., Ulrich, C., Freifeld, B., Daley, T., & Li, X. ( 2019 ). Distributed acoustic sensing using dark fiber for near‐surface characterization and broadband seismic event detection. Scientific Reports, 9 ( 1 ), 1328.
dc.identifier.citedreferenceArai, H., & Tokimatsu, K. ( 2004 ). S‐wave velocity profiling by inversion of microtremor H/V spectrum. Bulletin of the Seismological Society of America, 94 ( 1 ), 53 – 63.
dc.identifier.citedreferenceBard, P.‐Y. ( 1998 ). Microtremor measurements: A tool for site effect estimation, In Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion (Vol.  3, pp. 1251 – 1279 ). Rotterdam: AA Balkema.
dc.identifier.citedreferenceBensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. ( 2007 ). Processing seismic ambient noise data to obtain reliable broad‐band surface wave dispersion measurements. Geophysical Journal International, 169 ( 3 ), 1239 – 1260.
dc.identifier.citedreferenceBeyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. ( 2010 ). ObsPy: A python toolbox for seismology. Seismological Research Letters, 81 ( 3 ), 530 – 533.
dc.identifier.citedreferenceBiondi, B., Martin, E., Cole, S., Karrenbach, M., & Lindsey, N. ( 2017 ). Earthquakes analysis using data recorded by the Stanford DAS array. In SEG Technical Program Expanded Abstracts (pp. 2752 – 2756 ). https://doi.org/10.1190/segam2017-17745041.1
dc.identifier.citedreferenceBouchon, M. ( 2003 ). A review of the discrete wavenumber method. Pure and Applied Geophysics, 160 ( 3‐4 ), 445 – 465.
dc.identifier.citedreferenceCampillo, M., Gariel, J., Aki, K., & Sanchez‐Sesma, F. ( 1989 ). Destructive strong ground motion in Mexico City: Source, path, and site effects during great 1985 Michoacán earthquake. Bulletin of the Seismological Society of America, 79 ( 6 ), 1718 – 1735.
dc.identifier.citedreferenceDaley, T. M., Freifeld, B. M., Ajo‐Franklin, J., Dou, S., Pevzner, R., Shulakova, V., Kashikar, S., Miller, D. E., Goetz, J., Henninges, J., & Stefan, L. ( 2013 ). Field testing of fiber‐optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. The Leading Edge, 32 ( 6 ), 699 – 706.
dc.identifier.citedreferenceFederal Emergency Management Agency ( 2003 ). NEHRP recommended provisions for seismic regulations for new buildings and other structures. Fema.
dc.identifier.citedreferenceGarcía‐Jerez, A., Piña‐Flores, J., Sánchez‐Sesma, F. J., Luzón, F., & Perton, M. ( 2016 ). A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption. Computers & Geosciences, 97, 67 – 78.
dc.identifier.citedreferenceGrattan, K., & Sun, T. ( 2000 ). Fiber optic sensor technology: An overview. Sensors and Actuators A: Physical, 82 ( 1‐3 ), 40 – 61.
dc.identifier.citedreferenceHazlewood, R. M. ( 1976 ). Contour map and interpretive cross sections showing depth and configuration of bedrock surface, south San Francisco Bay region, California (Technical Report): U.S. Geological Survey.
dc.identifier.citedreferenceHeimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., Sudhaus, H., Vasyura‐Bathke, H., Willey, T., & Dahm, T. ( 2017 ). Pyrocko—An open‐source seismology toolbox and library. Potsdam: GFZ Data Services.
dc.identifier.citedreferenceHobiger, M., Cornou, C., Wathelet, M., Giulio, G. D., Knapmeyer‐Endrun, B., Renalier, F., Bard, P.‐Y., Savvaidis, A., Hailemikael, S., Le, B. N., Ohrnberger, M., & Theodoulidis, N. ( 2012 ). Ground structure imaging by inversions of rayleigh wave ellipticity: Sensitivity analysis and application to european strong‐motion sites. Geophysical Journal International, 192 ( 1 ), 207 – 229.
dc.identifier.citedreferenceHunter, J. D. ( 2007 ). Matplotlib: A 2D graphics environment. Computing in Science and Engineering, 9 ( 3 ), 90 – 95.
dc.identifier.citedreferenceJousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., & Krawczyk, C. M. ( 2018 ). Dynamic strain determination using fibre‐optic cables allows imaging of seismological and structural features. Nature Communications, 9 ( 1 ), 2509.
dc.identifier.citedreferenceKnudsen, K. L., Sowers, J. M., Witter, R. C., Wentworth, C. M., & Helley, E. J. ( 2000 ). Description of mapping of quaternary deposits and liquefaction susceptibility, nine‐county San Francisco Bay Region, California. Rep. No. United States Geologic Survey Open‐File Report 00 444.
dc.identifier.citedreferenceLangston, C. A. ( 1979 ). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research, 84 ( B9 ), 4749 – 4762.
dc.identifier.citedreferenceLellouch, A., Horne, S., Meadows, M. A., Farris, S., Nemeth, T., & Biondi, B. ( 2019 ). DAS observations and modeling of perforation‐induced guided waves in a shale reservoir. The Leading Edge, 38 ( 11 ), 858 – 864.
dc.identifier.citedreferenceLellouch, A., Yuan, S., Ellsworth, W. L., & Biondi, B. ( 2019 ). Velocity‐based earthquake detection using downhole distributed acoustic sensing—Examples from the san andreas fault observatory at depthvelocity‐based earthquake detection using downhole distributed acoustic sensing. Bulletin of the Seismological Society of America.
dc.identifier.citedreferenceLellouch, A., Yuan, S., Spica, Z., Biondi, B., & Ellsworth, W. ( 2019a ). A moveout‐based method for the detection of weak seismic events using downhole DAS arrays. In 81st EAGE Conference and Exhibition 2019.
dc.identifier.citedreferenceLellouch, A., Yuan, S., Spica, Z., Biondi, B., & Ellsworth, W. ( 2019b ). Seismic velocity estimation using passive downhole distributed acoustic sensing records—Examples from the San Andreas fault observatory at depth, 124, 6931 – 6948. https:doi.org/10.1029/2019JB017533
dc.identifier.citedreferenceLindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., Biondi, B. L., & Ajo‐Franklin, J. B. ( 2017 ). Fiber‐optic network observations of earthquake wavefields. Geophysical Research Letters, 44, 11,792 – 11,799. https:doi.org/10.1002/2017GL075722
dc.identifier.citedreferenceLontsi, A. M., Ohrnberger, M., Krüger, F., & Sánchez‐Sesma, F. J. ( 2016 ). Combining surface‐wave phase‐velocity dispersion curves and full microtremor horizontal‐to‐vertical spectral ratio for subsurface sedimentary site characterization. Interpretation, 4 ( 4 ), SQ41 – SQ49.
dc.identifier.citedreferenceLontsi, A. M., Sánchez‐Sesma, F. J., Molina‐Villegas, J. C., Ohrnberger, M., & Krüger, F. ( 2015 ). Full microtremor H/V (z, f) inversion for shallow subsurface characterization. Geophysical Journal International, 202 ( 1 ), 298 – 312.
dc.identifier.citedreferenceMartin, E. R. ( 2018 ). Passive imaging and characterization of the subsurface with distributed acoustic sensing (open access PhD dissertation).
dc.identifier.citedreferenceMartin, E. R., & Biondo, B. L. ( 2018 ). Eighteen months of continuous near-surface monitoring with DAS data collected under Stanford University. In SEG Technical Program Expanded Abstracts (pp. 4958 – 4962 ). https://doi.org/10.1190/segam2018-2997853.1
dc.identifier.citedreferenceMartin, E., Biondi, B., Karrenbach, M., & Cole, S. ( 2017 ). Continuous subsurface monitoring by passive seismic with distributed acoustic sensors‐the “Stanford array” experiment. In 15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 31 July‐3 August 2017 (pp. 1366 – 1370 ). Brazilian Geophysical Society.
dc.identifier.citedreferenceMartin, E. R., Castillo, C. M., Cole, S., Sawasdee, P. S., Yuan, S., Clapp, R., Karrenbach, M., & Biondi, B. L. ( 2017 ). Seismic monitoring leveraging existing telecom infrastructure at the SDASA: Active, passive, and ambient‐noise analysis. The Leading Edge, 36 ( 12 ), 1025 – 1031.
dc.identifier.citedreferenceMartin, E. R., Lindsey, N., Ajo‐Franklin, J., & Biondi, B. ( 2018 ). Introduction to interferometry of fiber optic strain measurements. EarthArXiv.
dc.identifier.citedreferenceMateeva, A., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Lopez, J., Grandi, S., Hornman, K., Lumens, P., Franzen, A., Hill, D., & Roy, J. ( 2012 ). Advances in distributed acoustic sensing (DAS) for VSP. In SEG Technical Program Expanded Abstracts (pp. 1 – 5 ). https://doi.org/10.1190/segam2012-0739.1
dc.identifier.citedreferenceNakamura, Y. ( 1989 ). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface (in Japanese with english abstract). Railway Technical Research Institute, Quarterly Reports, 30 ( 1 ), 25 – 33.
dc.identifier.citedreferencePerton, M., Contreras‐Zazueta, M. A., & Sánchez‐Sesma, F. J. ( 2016 ). Indirect boundary element method to simulate elastic wave propagation in piecewise irregular and flat regions. Geophysical Journal International, 205 ( 3 ), 1832 – 1842.
dc.identifier.citedreferencePerton, M., Sánchez‐Sesma, F. J., Rodríguez‐Castellanos, A., Campillo, M., & Weaver, R. L. ( 2009 ). Two perspectives on equipartition in diffuse elastic fields in three dimensions. The Journal of the Acoustical Society of America, 126 ( 3 ), 1125 – 1130.
dc.identifier.citedreferencePerton, M., Spica, Z., & Caudron, C. ( 2017 ). Inversion of the horizontal‐to‐vertical spectral ratio in presence of strong lateral heterogeneity. Geophysical Journal International, 212 ( 2 ), 930 – 941.  https://doi.org/10.1093/gji/ggx458
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.