Show simple item record

Mass Activated Droplet Sorting (MADS) Enables Highâ Throughput Screening of Enzymatic Reactions at Nanoliter Scale

dc.contributor.authorHolland‐moritz, Daniel A.
dc.contributor.authorWismer, Michael K.
dc.contributor.authorMann, Benjamin F.
dc.contributor.authorFarasat, Iman
dc.contributor.authorDevine, Paul
dc.contributor.authorGuetschow, Erik D.
dc.contributor.authorMangion, Ian
dc.contributor.authorWelch, Christopher J.
dc.contributor.authorMoore, Jeffrey C.
dc.contributor.authorSun, Shuwen
dc.contributor.authorKennedy, Robert T.
dc.date.accessioned2020-03-17T18:28:41Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:28:41Z
dc.date.issued2020-03-09
dc.identifier.citationHolland‐moritz, Daniel A. ; Wismer, Michael K.; Mann, Benjamin F.; Farasat, Iman; Devine, Paul; Guetschow, Erik D.; Mangion, Ian; Welch, Christopher J.; Moore, Jeffrey C.; Sun, Shuwen; Kennedy, Robert T. (2020). "Mass Activated Droplet Sorting (MADS) Enables Highâ Throughput Screening of Enzymatic Reactions at Nanoliter Scale." Angewandte Chemie International Edition 59(11): 4470-4477.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/154315
dc.description.abstractMicrofluidic droplet sorting enables the highâ throughput screening and selection of waterâ inâ oil microreactors at speeds and volumes unparalleled by traditional wellâ plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for highâ throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESIâ MS). Droplets are split, one portion is analyzed by ESIâ MS, and the second portion is sorted based on the MS result. Throughput of 0.7â samplesâ sâ 1 is achieved with 98â % accuracy using a selfâ correcting and adaptive sorting algorithm. We use the system to screen â 15â 000â samples in 6â h and demonstrate its utility by sorting 25â nL droplets containing transaminase expressed in vitro. Labelâ free ESIâ MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.A microfluidic system for sorting nanoliter droplets based on mass spectrometry is presented. Fully automated, labelâ free sorting at 0.7â samplesâ sâ 1 is achieved with 98â % accuracy. In vitro transcription and translation (ivTT) of a transaminase enzyme in ca.â 25â nL samples is demonstrated and samples are sorted on the basis of enzyme activity.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermass spectrometry
dc.subject.othermicroreactors
dc.subject.otherhigh-throughput screening
dc.subject.otherbiocatalysis
dc.subject.otherdroplet microfluidics
dc.titleMass Activated Droplet Sorting (MADS) Enables Highâ Throughput Screening of Enzymatic Reactions at Nanoliter Scale
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/1/anie201913203.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/2/anie201913203-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/3/anie201913203_am.pdf
dc.identifier.doi10.1002/anie.201913203
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceY. Skhiri, P. Gruner, B. Semin, Q. Brosseau, D. Pekin, L. Mazutis, V. Goust, F. Kleinschmidt, A. El Harrak, J. Hutchison, E. Mayot, J. Bartolo, A. Griffiths, V. Taly, J. Baret, Soft Matter 2012, 8, 10618 â 10627.
dc.identifier.citedreferenceK. Ahn, J. Agresti, H. Chong, M. Marquez, D. Weitz, Appl. Phys. Lett. 2006, 88, 2641050.
dc.identifier.citedreferenceL. Mahler, M. Tovar, T. Weber, S. Brandes, M. Rudolph, J. Ehgartner, T. Mayr, M. Figge, M. Roth, E. Zang, RSC Adv. 2015, 5, 101871 â 101878.
dc.identifier.citedreferenceJ. Agresti, E. Antipov, A. Abate, K. Ahn, A. Rowat, J. Baret, M. Marquez, A. Klibanov, A. Griffiths, D. Weitz, Proc. Natl. Acad. Sci. USA 2010, 107, 6550 - 6550.
dc.identifier.citedreferenceX. Zhu, X. Shi, S. Wang, J. Chu, W. Zhu, B. Ye, P. Zuo, Y. Wang, RSC Adv. 2019, 9, 4507 â 4513; A. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, L. Peshkin, D. Weitz, M. Kirschner, Cell 2015, 161, 1187 â 1201; E. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A. Bialas, N. Kamitaki, E. Martersteck, J. Trombetta, D. Weitz, J. Sanes, A. Shalek, A. Regev, S. McCarroll, Cell 2015, 161, 1202 â 1214.
dc.identifier.citedreferenceW. Cochrane, M. Malone, V. Dane, V. Cavett, A. Satz, B. Paegel, ACS Comb. Sci. 2019, 21, 425 â 435; A. MacConnell, A. Price, B. Paegel, ACS Comb. Sci. 2017, 19, 181 â 192.
dc.identifier.citedreferenceY. Tao, A. Rotem, H. Zhang, C. Chang, A. Basu, A. Kolawole, S. Koehler, Y. Ren, J. Lin, J. Pipas, A. Feldman, C. Wobus, D. Weitz, Lab Chip 2015, 15, 3934 â 3940; B. DeKosky, T. Kojima, A. Rodin, W. Charab, G. Ippolito, A. Ellington, G. Georgiou, Nat. Med. 2015, 21, 86 â 91.
dc.identifier.citedreferenceK. Ahn, C. Kerbage, T. Hunt, R. Westervelt, D. Link, D. Weitz, Appl. Phys. Lett. 2006, 88, 024104.
dc.identifier.citedreferenceJ. Baret, O. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M. Samuels, J. Hutchison, J. Agresti, D. Link, D. Weitz, A. Griffiths, Lab Chip 2009, 9, 1850 â 1858; T. Beneyton, I. Wijaya, P. Postros, M. Najah, P. Leblond, A. Couvent, E. Mayot, A. Griffiths, A. Drevelle, Sci. Rep. 2016, 6, 27223; M. Najah, R. Calbrix, I. Mahendra-Wijaya, T. Beneyton, A. Griffiths, A. Drevelle, Chem. Biol. 2014, 21, 1722 â 1732.
dc.identifier.citedreferenceS. Sjostrom, Y. Bai, M. Huang, Z. Liu, J. Nielsen, H. Joensson, H. Svahn, Lab Chip 2014, 14, 806 â 813.
dc.identifier.citedreferenceY. Zhu, Q. Fang, Anal. Chim. Acta 2013, 787, 24 â 35.
dc.identifier.citedreferenceT. Tran, F. Lan, C. Thompson, A. Abate, J. Phys. D 2013, 46.
dc.identifier.citedreferenceO. Caen, S. Schutz, M. Jammalamadaka, J. Vrignon, P. Nizard, T. Schneider, J. Baret, V. Taly, Microsyst. Nanoeng. 2018, 4, 33; R. Obexer, M. Pott, C. Zeymer, A. Griffiths, D. Hilvert, Protein Eng. Des. Sel. 2016, 29, 355 â 365; B. Kintses, C. Hein, M. Mohamed, M. Fischlechner, F. Courtois, C. Leine, F. Hollfelder, Chem. Biol. 2012, 19, 1001 â 1009; P. Colin, B. Kintses, F. Gielen, C. Miton, G. Fischer, M. Mohamed, M. Hyvonen, D. Morgavi, D. Janssen, F. Hollfelder, Nat. Commun. 2015, 6, 10008.
dc.identifier.citedreferenceA. Fallah-Araghi, J. Baret, M. Ryckelynck, A. Griffiths, Lab Chip 2012, 12, 882 â 891.
dc.identifier.citedreferenceF. Gielen, R. Hours, S. Emond, M. Fischlechner, U. Schell, F. Hollfelder, Proc. Natl. Acad. Sci. USA 2016, 113, E 7383 â E 7389.
dc.identifier.citedreferenceE. Farinas, T. Bulter, F. Arnold, Curr. Opin. Biotechnol. 2001, 12, 545 â 551.
dc.identifier.citedreferenceA. Debon, M. Pott, R. Obexer, A. Green, L. Friedrich, A. Griffiths, D. Hilvert, Nat. Catal. 2019, 2, 740 â 747.
dc.identifier.citedreferenceY. Chen, A. Gani, S. Tang, Lab Chip 2012, 12, 5093 â 5103; F. Courtois, L. Olguin, G. Whyte, A. Theberge, W. Huck, F. Hollfelder, C. Abell, Anal. Chem. 2009, 81, 3008 â 3016.
dc.identifier.citedreferenceX. Diefenbach, I. Farasat, E. Guetschow, C. Welch, R. Kennedy, S. Sun, J. Moore, ACS Omega 2018, 3, 1498 â 1508.
dc.identifier.citedreferenceC. Savile, J. Janey, E. Mundorff, J. Moore, S. Tam, W. Jarvis, J. Colbeck, A. Krebber, F. Fleitz, J. Brands, P. Devine, G. Huisman, G. Hughes, Science 2010, 329, 305 â 309.
dc.identifier.citedreferenceR. Maceiczyk, D. Hess, F. Chiu, S. Stavrakis, A. deMello, Lab Chip 2017, 17, 3654 â 3663.
dc.identifier.citedreferenceM. Girault, H. Kim, H. Arakawa, K. Matsuura, M. Odaka, A. Hattori, H. Terazono, K. Yasuda, Sci. Rep. 2017, 7; E. Zang, S. Brandes, M. Tovar, K. Martin, F. Mech, P. Horbert, T. Henkel, M. Figge, M. Roth, Lab Chip 2013, 13, 3707 â 3713.
dc.identifier.citedreferenceC. Syme, C. Martino, R. Yusvana, N. Sirimuthu, J. Cooper, Anal. Chem. 2012, 84, 1491 â 1495.
dc.identifier.citedreferenceX. Wang, L. Ren, Y. Su, Y. Ji, Y. Liu, C. Li, X. Li, Y. Zhang, W. Wang, Q. Hu, D. Han, J. Xu, B. Ma, Anal. Chem. 2017, 89, 12569 â 12577.
dc.identifier.citedreferenceI. Jahn, O. Zukovskaja, X. Zheng, K. Weber, T. Bocklitz, D. Cialla-May, J. Popp, Analyst 2017, 142, 1022 â 1047.
dc.identifier.citedreferenceS. Sun, R. Kennedy, Anal. Chem. 2014, 86, 9309 â 9314; C. Smith, X. Li, T. Mize, T. Sharpe, E. Graziani, C. Abell, W. Huck, Anal. Chem. 2013, 85, 3812 â 3816; K. Wink, L. Mahler, J. Beulig, S. Piendl, M. Roth, D. Belder, Anal. Bioanal. Chem. 2018, 410, 7679 â 7687; D. J. Steyer, R. T. Kennedy, Anal. Chem. 2019, 91, 6645 â 6651; S. Sun, T. Slaney, R. Kennedy, Anal. Chem. 2012, 84, 5794 â 5800.
dc.identifier.citedreferenceS. Küster, S. Fagerer, P. Verboket, K. Eyer, K. Jefimovs, R. Zenobi, P. Dittrich, Anal. Chem. 2013, 85, 1285 â 1289; S. Küster, M. Pabst, K. Jefimovs, R. Zenobi, P. Dittrich, Anal. Chem. 2014, 86, 4848 â 4855; T. Hatakeyama, D. Chen, R. Ismagilov, J. Am. Chem. Soc. 2006, 128, 2518 â 2519.
dc.identifier.citedreferenceH. Lee, M. Crane, Y. Zhang, H. Lu, Integr. Biol. 2013, 5, 372 â 380.
dc.identifier.citedreferenceJ. Nie, R. Kennedy, Anal. Chem. 2010, 82, 7852 â 7856.
dc.identifier.citedreferenceJ. Pei, Q. Li, M. Lee, G. Valaskovic, R. Kennedy, Anal. Chem. 2009, 81, 6558 â 6561.
dc.identifier.citedreferenceM. Pan, L. Rosenfeld, M. Kim, M. Xu, E. Lin, R. Derda, S. Tang, ACS Appl. Mater. Interfaces 2014, 6, 21446 â 21453; M. Pan, F. Lyu, S. Tang, Anal. Chem. 2015, 87, 7938 â 7943; G. Etienne, A. Vian, M. Biocanin, B. Deplancke, E. Amstad, Lab Chip 2018, 18, 3903 â 3912.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.