Show simple item record

Adaptive multi‐index collocation for uncertainty quantification and sensitivity analysis

dc.contributor.authorJakeman, John D.
dc.contributor.authorEldred, Michael S.
dc.contributor.authorGeraci, Gianluca
dc.contributor.authorGorodetsky, Alex
dc.date.accessioned2020-03-17T18:28:42Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:28:42Z
dc.date.issued2020-03-30
dc.identifier.citationJakeman, John D.; Eldred, Michael S.; Geraci, Gianluca; Gorodetsky, Alex (2020). "Adaptive multi‐index collocation for uncertainty quantification and sensitivity analysis." International Journal for Numerical Methods in Engineering 121(6): 1314-1343.
dc.identifier.issn0029-5981
dc.identifier.issn1097-0207
dc.identifier.urihttps://hdl.handle.net/2027.42/154316
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othersimulation
dc.subject.otheruncertainty quantification
dc.subject.othermodeling
dc.subject.otherdecision making
dc.subject.othervalidation
dc.subject.othermultifidelity
dc.subject.othersensitivity analysis
dc.titleAdaptive multi‐index collocation for uncertainty quantification and sensitivity analysis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154316/1/nme6268.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154316/2/NME_6268_novelty.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154316/3/nme6268_am.pdf
dc.identifier.doi10.1002/nme.6268
dc.identifier.sourceInternational Journal for Numerical Methods in Engineering
dc.identifier.citedreferenceBungartz HJ, Griebel M. Sparse grids. Acta Numer. 2004; 13: 147 ‐ 269. https://doi.org/10.1017/S0962492904000182.
dc.identifier.citedreferenceNg L, Eldred M. Multifidelity uncertainty quantification using non‐intrusive polynomial Chaos and stochastic collocation. Proceedings of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference Honolulu, Hawaii. Reston, VA: American Institute of Aeronautics and Astronautics; 2012.
dc.identifier.citedreferenceEldred MS, Ng LWT, Barone MF, Domino SP. In: Ghanem R, Higdon D, Owhadi H, eds. Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models. Cham: Springer International Publishing; 2016: 1 ‐ 45 https://doi.org/10.1007/978‐3‐319‐11259‐6_25‐1.
dc.identifier.citedreferenceCliffe KA, Giles MB, Scheichl R, Teckentrup AL. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput Visual Sci. 2011; 14 ( 1 ): 3 https://doi.org/10.1007/s00791‐011‐0160‐x.
dc.identifier.citedreferenceGeraci G, Eldred MS, Iaccarino G. A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications. 19th AIAA Non‐Deterministic Approaches Conference. Reston, VA: American Institute of Aeronautics and Astronautics; 2017.
dc.identifier.citedreferenceGiles MB. Multilevel Monte Carlo path simulation. Oper Res. 2008; 56 ( 3 ): 607 ‐ 617.
dc.identifier.citedreferenceHaji‐Ali AL, Nobile F, Tempone R. Multi‐index Monte Carlo: when sparsity meets sampling. Numer Math. 2016; 132 ( 4 ): 767 ‐ 806. https://doi.org/10.1007/s00211‐015‐0734‐5.
dc.identifier.citedreferenceNg L. Multifidelity approaches for Design under uncertainty. PhD thesis, aeronautics and astronautics, Massachusetts institute of. Dent Tech. 2013.
dc.identifier.citedreferenceFenrich R, Menier V, Avery P, Alonso J. Reliability‐based design optimization of a supersonic nozzle. Proceedings of the 6th European Conference on Computational Mechanics Glasgow. Barcelona, Spain: International Center for Numerical Methods in Engineering; 2018.
dc.identifier.citedreferenceEconomon TD, Palacios F, Copeland SR, Lukaczyk TW, Alonso JJ. SU2: an open‐source suite for multiphysics simulation and design. AIAA J. 2016; 54 ( 3 ): 828 ‐ 846.
dc.identifier.citedreferenceFarhat C, AERO‐S: A General‐Purpose Finite Element Structural Analyzer; 2018. Https://bitbucket.org/frg/aero‐s.
dc.identifier.citedreferenceNarayan A, Jakeman JD. Adaptive Leja sparse grid constructions for stochastic collocation and high‐dimensional approximation. SIAM J Sci Comput. 2014; 36 ( 6 ): A2952 ‐ A2983. https://doi.org/10.1137/140966368.
dc.identifier.citedreferenceBarthelmann V, Novak E, Ritter K. High dimensional polynomial interpolation on sparse grids. Adv Comput Math. 2000; 12: 273 ‐ 288.
dc.identifier.citedreferenceSudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Safe. 2008; 93 ( 7 ): 964 ‐ 979.
dc.identifier.citedreferenceSmolyak SA. Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math Dokl. 1963; 4: 240 ‐ 243.
dc.identifier.citedreferenceNovak E, Ritter K. Simple cubature formulas with high polynomial exactness. Const Approx. 1999; 15 ( 4 ): 499 ‐ 522. https://doi.org/10.1007/s003659900119.
dc.identifier.citedreferencede Baar JHS, Roberts SG. Multifidelity sparse‐grid‐based uncertainty quantification for the Hokkaido Nansei‐oki tsunami. Pure Appl Geophys. 2017; 174 ( 8 ): 3107 ‐ 3121. https://doi.org/10.1007/s00024‐017‐1606‐y.
dc.identifier.citedreferenceGerstner T, Griebel M. Dimension‐adaptive tensor‐product quadrature. Comput Secur. 2003; 71 ( 1 ): 65 ‐ 87.
dc.identifier.citedreferenceFarcaş IG, Sârbu PC, Bungartz HJ, Neckel T, Uekermann B. Multilevel adaptive stochastic collocation with dimensionality reduction. In: Garcke J, Pflüger D, Webster CG, Zhang G, eds. Sparse Grids and Applications – Miami 2016. Cham: Springer International Publishing; 2018: 43 ‐ 68.
dc.identifier.citedreferenceSobol’ IM. Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp. 1993; 1 ( 4 ): 407 ‐ 414.
dc.identifier.citedreferenceSaltelli A, Chan K, Scott EM. Sensitivity Analysis. New York: Wiley; 2000.
dc.identifier.citedreferenceBuzzard GT. Global sensitivity analysis using sparse grid interpolation and polynomial chaos. Reliab Eng Syst Safe 2012; 107 (0): 82 – 89. http://www.sciencedirect.com/science/article/pii/S09518320110%01530.
dc.identifier.citedreferenceFormaggia L, Guadagnini A, Imperiali I, et al. Global sensitivity analysis through polynomial chaos expansion of a basin‐scale geochemical compaction model. Comput Geosci. 2013; 17 ( 1 ): 25 ‐ 42. https://doi.org/10.1007/s10596‐012‐9311‐5.
dc.identifier.citedreferenceBuzzard GT. Efficient basis change for sparse‐grid interpolating polynomials with application to T‐cell sensitivity analysis. Comput Biol J. 2013; 2013: http://www.hindawi.com/journals/cbj/2013/562767/abs/.
dc.identifier.citedreferenceJakeman JD, Franzelin F, Narayan A, Eldred M, Plfüger D. Polynomial chaos expansions for dependent random variables. Comput Methods Appl Mech Eng. 2019; 351: 643 ‐ 666. http://www.sciencedirect.com/science/article/pii/S00457825193%01884.
dc.identifier.citedreferenceButler T, Jakeman JD, Wildey T. Convergence of probability densities using approximate models for forward and inverse problems in uncertainty quantification. ArXiv:180700375; 2018.
dc.identifier.citedreferenceGhanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach. New York, NY: Springer‐Verlag; 1991.
dc.identifier.citedreferenceXiu D, Karniadakis GE. The Wiener‐Askey Polynomial Chaos for stochastic differential equations. SIAM J Sci Comput. 2002; 24 ( 2 ): 619 ‐ 644.
dc.identifier.citedreferenceArnst M, Ghanem R, Phipps E, Red‐Horse J. Reduced chaos expansions with random coefficientsin reduced‐dimensional stochastic modeling of coupled problems. Int J Numer Methods Eng. 2014; 97 ( 5 ): 352 ‐ 376. https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4595.
dc.identifier.citedreferenceRasmussen CE, Williams CKI. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). Cambridge, MA: The MIT Press; 2005.
dc.identifier.citedreferenceSacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of Computer Experiments. Statist Sci. 1989; 4 ( 4 ): 409 ‐ 423. http://www.jstor.org/stable/2245858.
dc.identifier.citedreferenceDoostan A, Validi A, Iaccarino G. Non‐intrusive low‐rank separated approximation of high‐dimensional stochastic models. Comput Methods Appl Mech Eng. 2013; 263: 42 ‐ 55.
dc.identifier.citedreferenceGorodetsky A, Jakeman JD. Gradient‐based optimization for regression in the functional tensor‐train format. J Comput Phys. 2018; 374: 1219 ‐ 1238. http://www.sciencedirect.com/science/article/pii/S0021999118305321.
dc.identifier.citedreferenceOseledets IV. Tensor‐train decomposition. SIAM J Sci Comput. 2011; 33 ( 5 ): 2295 ‐ 2317.
dc.identifier.citedreferenceGorodetsky AA, Karaman S, Marzouk YM. Function‐train: a continuous analogue of the tensor‐train decomposition. arXiv preprint arXiv:151009088; 2015.
dc.identifier.citedreferenceNobile F, Tempone R, Webster CG. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J Num Anal. 2008; 46 ( 5 ): 2309 ‐ 2345. http://link.aip.org/link/?SNA/46/2309/1.
dc.identifier.citedreferenceXiu D, Hesthaven JS. High‐order collocation methods for differential equations with random inputs. SIAM J Sci Comput. 2005; 27 ( 3 ): 1118 ‐ 1139. http://epubs.siam.org/doi/abs/10.1137/040615201.
dc.identifier.citedreferenceJakeman JD, Roberts SG. Local and dimension adaptive stochastic collocation for uncertainty quantification. In: Garcke J, Griebel M, eds. Sparse Grids and Applications, vol. 88 of Lecture Notes in Computational Science and Engineering. Berlin, Germany: Springer; 2013: 181 ‐ 203 https://doi.org/10.1007/978‐3‐642‐31703‐3_9.
dc.identifier.citedreferenceAgarwal N, Aluru NR. A data‐driven stochastic collocation approach for uncertainty quantification in MEMS. Int J Numer Methods Eng. 2010; 83 ( 5 ): 575 ‐ 597. https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2844.
dc.identifier.citedreferenceCui T, Marzouk YM, Willcox KE. Data‐driven model reduction for the Bayesian solution of inverse problems. Int J Numer Methods Eng. 2014; 102 ( 5 ): 966 ‐ 990. https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4748.
dc.identifier.citedreferenceSoize C, Farhat C. A nonparametric probabilistic approach for quantifying uncertainties in low‐dimensional and high‐dimensional nonlinear models. Int J Numer Methods Eng. 2017; 109 ( 6 ): 837 ‐ 888. https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5312.
dc.identifier.citedreferenceCarlberg K. Adaptive h‐refinement for reduced‐order models. Int J Numer Methods Eng. 2014; 102 ( 5 ): 1192 ‐ 1210. https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4800.
dc.identifier.citedreferencePerdikaris P, Raissi M, Damianou A, Lawrence ND, Karniadakis GE. Nonlinear information fusion algorithms for data‐efficient multi‐fidelity modelling. Proc R Soc Lond A. 2017; 473 ( 2198 ): 20160751. http://rspa.royalsocietypublishing.org/content/473/2198/20160751.
dc.identifier.citedreferenceKennedy MC, O’Hagan A. Predicting the output from a complex Computer code when fast approximations are available. Biometrika. 2000; 87 ( 1 ): 1 ‐ 13. http://www.jstor.org/stable/2673557.
dc.identifier.citedreferenceGratiet LL, Garnier J. Recursive co‐kriging model for design of computer experiments with multiple levels of fidelity. Int J Uncertain Quan. 2014; 4 ( 5 ): 365 ‐ 386.
dc.identifier.citedreferenceNarayan A, Gittelson C, Xiu D. A stochastic collocation algorithm with multifidelity models. SIAM J Sci Comput. 2014; 36 ( 2 ): A495 ‐ A521. https://doi.org/10.1137/130929461.
dc.identifier.citedreferenceTeckentrup A, Jantsch P, Webster C, Gunzburger M. A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA J Uncertain Quan. 2015; 3 ( 1 ): 1046 ‐ 1074. https://doi.org/10.1137/140969002.
dc.identifier.citedreferenceHaji‐Ali A, Nobile F, Tamellini L, Tempone R. Multi‐index stochastic collocation for random PDEs. Comput Methods Appl Mech Eng. 2016; 306: 95 ‐ 122. http://www.sciencedirect.com/science/article/pii/S0045782516301141.
dc.identifier.citedreferenceGorodetsky A, Geraci G, Eldred M, Jakeman JD. A generalized framework for approximate control variates. ArXiv; 2018.
dc.identifier.citedreferencePeherstorfer B, Willcox K, Gunzburger M. Optimal model management for multifidelity Monte Carlo estimation. SIAM J Sci Comput Appear. 2016; 38: A3163 ‐ A3194. https://doi.org/10.1137/15M1046472
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.