Show simple item record

Magnetic resonance fingerprinting review part 2: Technique and directions

dc.contributor.authorMcGivney, Debra F.
dc.contributor.authorBoyacıoğlu, Rasim
dc.contributor.authorJiang, Yun
dc.contributor.authorPoorman, Megan E.
dc.contributor.authorSeiberlich, Nicole
dc.contributor.authorGulani, Vikas
dc.contributor.authorKeenan, Kathryn E.
dc.contributor.authorGriswold, Mark A.
dc.contributor.authorMa, Dan
dc.date.accessioned2020-03-17T18:28:44Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2020-03-17T18:28:44Z
dc.date.issued2020-04
dc.identifier.citationMcGivney, Debra F.; Boyacıoğlu, Rasim ; Jiang, Yun; Poorman, Megan E.; Seiberlich, Nicole; Gulani, Vikas; Keenan, Kathryn E.; Griswold, Mark A.; Ma, Dan (2020). "Magnetic resonance fingerprinting review part 2: Technique and directions." Journal of Magnetic Resonance Imaging 51(4): 993-1007.
dc.identifier.issn1053-1807
dc.identifier.issn1522-2586
dc.identifier.urihttps://hdl.handle.net/2027.42/154317
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherdeep learning
dc.subject.othermagnetic resonance fingerprinting
dc.subject.otheroptimization
dc.subject.otherreconstruction
dc.subject.othermachine learning
dc.titleMagnetic resonance fingerprinting review part 2: Technique and directions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154317/1/jmri26877.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154317/2/jmri26877_am.pdf
dc.identifier.doi10.1002/jmri.26877
dc.identifier.sourceJournal of Magnetic Resonance Imaging
dc.identifier.citedreferenceCauley SF, Setsompop K, Ma D, et al. Fast group matching for MR fingerprinting reconstruction. Magn Reson Med 2015; 74: 523 â 528.
dc.identifier.citedreferenceFessler JA, Sutton BP. Nonuniform fast Fourier transforms using minâ max interpolation. IEEE Trans Signal Process 2003; 51: 560 â 574.
dc.identifier.citedreferencePierre EY, Ma D, Chen Y, Badve C, Griswold MA. Multiscale reconstruction for MR fingerprinting. Magn Reson Med 2016; 75: 2481 â 2492.
dc.identifier.citedreferenceZhao B, Setsompop K, Ye H, Cauley SF, Wald LL. Maximum likelihood reconstruction for magnetic resonance fingeprinting. IEEE Trans Med Imaging 2016; 35: 1812 â 1823.
dc.identifier.citedreferenceLima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM, Prieto C. Sparsity and locally low rank regularization for MR fingerprinting. Magn Reson Med 2019; 81: 3530 â 3543.
dc.identifier.citedreferenceYang J, Zhang Y. Alternating direction algorithms for l1â prolbmes in compressive sensing. SIAM J Sci Comput 2011; 33: 250 â 278.
dc.identifier.citedreferenceBoyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 2010; 3: 1 â 122.
dc.identifier.citedreferenceDavies M, Puy G, Vandergheynst P, Wiaux Y. A compressed sensing framework for magnetic resonance fingerprinting. SIAM J Imaging Sci 2014; 7: 2623 â 2656.
dc.identifier.citedreferenceDoneva M, Amthor T, Koken P, Sommer K, Börnert P. Matrix completionâ based reconstruction for undersampled magnetic resonance fingerprinting data. Magn Reson Imaging 2017; 41: 41 â 52.
dc.identifier.citedreferenceOstenson J, Robison RK, Zwart NR, Welch EB. Multiâ frequency interpolation in spiral magnetic resonance fingerprinting for correction of offâ resonance blurring. Magn Reson Imaging 2017; 41: 63 â 72.
dc.identifier.citedreferenceVan Vaals JJ, Brummer ME, Dixon WT, et al. "Keyâ hole" method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 1993; 3: 671 â 675.
dc.identifier.citedreferenceCruz G, Schneider T, Bruijnen T, Gaspar AS, Botnar RM, Prieto C. Accelerated magnetic resonance fingerprinting using softâ weighted keyâ hole. PLoS One 2018; 13: e0201808.
dc.identifier.citedreferenceCao X, Liao C, Wang Z, et al. Robust slidingâ window reconstruction for Accelerating the acquisition of MR fingerprinting. Magn Reson Med 2017; 78: 1579 â 1588.
dc.identifier.citedreferenceTohka J. Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review. World J Radiol 2014; 6: 855 â 864.
dc.identifier.citedreferenceBadve C, Yu A, Rogers M, et al. Simultaneous T1 and T2 brain relaxometry in asymptomatic volunteers using magnetic resonance fingerprinting. Tomography 2015; 1: 136 â 144.
dc.identifier.citedreferenceTang S, Fernandezâ Granda C, Lannuzel S, et al. Multicompartment magnetic resonance fingerprinting. Inverse Probl 2018; 34: 094005.
dc.identifier.citedreferenceMazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 2019; 49: 939 â 954.
dc.identifier.citedreferenceYang M, Jiang Y, Ma D, Mehta B, Griswold M. Game of learning Bloch equation simulations for MR fingerprinting. In: Proc 26th Annual Meeting ISMRM, Paris; 2018. p 0673.
dc.identifier.citedreferenceHamilton JI, Currey D, Griswold M, Seiberlich N. A neural network for rapid generation of cardiac MR fingerprinting dictionaries with arbitrary heart rhythms. In: Proc 27th Annual Meeting ISMRM, Montreal; 2019. p 2421.
dc.identifier.citedreferenceBoux F, Forbes F, Arbel J, Barbier EL. Dictionaryâ free MR fingerprinting parameter estimation via inverse regression. In: Proc 26th Annual Meeting ISMRM, Paris; 2018. p 4259.
dc.identifier.citedreferenceVirtue P, Tamir JI, Doneva M, Yu SX, Lustig M. Learning Contrast Synthesis from MR Fingerprinting. In: Proc 26th Annual Meeting ISMRM, Paris; 2018. p 0676.
dc.identifier.citedreferenceCohen O, Zhu B, Rosen MS. MR fingerprinting deep reconstruction network (DRONE). Magn Reson Med 2018; 80: 885 â 894.
dc.identifier.citedreferenceAbadi M, Barham P, Chen J, et al. TensorFlow: A system for largeâ scale machine learning. In: 12th USENIX Symp Oper Syst Des Implementation, Savannah, GA; 2016; 265 â 283.
dc.identifier.citedreferenceHoppe E, Körzdörfer G, Würfl T, et al. Deep learning for magnetic resonance fingerprinting: A new approach for predicting quantitative parameter values from time series. Stud Health Technol Inform 2017; 243: 202 â 206.
dc.identifier.citedreferenceFang Z, Chen Y, Liu M, et al. Deep learning for fast and spatiallyâ constrained tissue quantification from highlyâ accelerated data in magnetic resonance fingerprinting. IEEE Trans Med Imaging 2019 [Epub ahead of print] doi: https://doi.org/10.1109/TMI.2019.2899328.
dc.identifier.citedreferenceVirtue P, Yu SX, Lustig M. Better than real: Complexâ valued neural nets for MRI fingerprinting. In: 2017 IEEE Int Conf Image Process; 2017: 3953 â 3957.
dc.identifier.citedreferenceNataraj G, Nielsen Jâ F, Scott C, Fessler JA. Dictionaryâ free MRI PERK: Parameter estimation via regression with kernels. IEEE Trans Med Imaging 2018; 37: 2103 â 2114.
dc.identifier.citedreferenceZhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domainâ transform manifold learning. Nature 2018; 555: 487 â 492.
dc.identifier.citedreferenceMa D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature 2013; 495: 187 â 192.
dc.identifier.citedreferenceMehta BB, Coppo S, McGivney DF, et al. Magnetic resonance fingerprinting: A technical review. Magn Reson Med 2018; 81: 25 â 46.
dc.identifier.citedreferencePanda A, Mehta BB, Coppo S, et al. Magnetic resonance fingerprinting â An overview. Curr Opin Biomed Eng 2017; 3: 56 â 66.
dc.identifier.citedreferenceJiang Y, Ma D, Jerecic R, et al. MR fingerprinting using the quick echo splitting NMR imaging technique. Magn Reson Med 2017; 77: 979 â 988.
dc.identifier.citedreferenceJiang Y, Ma D, Seiberlich N, Gulani V, Griswold M. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med 2015; 74: 1621 â 1631.
dc.identifier.citedreferenceMa D, Jiang Y, Chen Y, et al. Fast 3D magnetic resonance fingerprinting for a wholeâ brain coverage. Magn Reson Med 2018; 79: 2190 â 2197.
dc.identifier.citedreferenceCrawley AP, Henkelman RM. A comparison of oneâ shot and recovery methods in T1 imaging. Magn Reson Med 1988; 7: 23 â 34.
dc.identifier.citedreferenceCarr H, Purcell E. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954; 94: 630 â 638.
dc.identifier.citedreferenceMeiboom S, Gill D. Modified spinâ echo method for measuring nuclear relaxation times. Rev Sci Instrum 1958; 29: 688 â 691.
dc.identifier.citedreferenceFram EK, Herfkens RJ, Johnson GA, et al. Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 1987; 5: 201 â 208.
dc.identifier.citedreferenceDeoni SCL, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003; 49: 515 â 526.
dc.identifier.citedreferenceBieri O, Scheffler K, Welsch GH, Trattnig S, Mamisch TC, Ganter C. Quantitative mapping of T2 using partial spoiling. Magn Reson Med 2011; 66: 410 â 418.
dc.identifier.citedreferenceWelsch GH, Scheffler K, Mamisch TC, et al. Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla. Magn Reson Med 2009; 62: 544 â 549.
dc.identifier.citedreferenceLook DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970; 41: 250 â 251.
dc.identifier.citedreferenceSchmitt P, Griswold MA, Jakob PM, et al. Inversion recovery TrueFISP: Quantification of T1, T2, and spin density. Magn Reson Med 2004; 51: 661 â 667.
dc.identifier.citedreferenceEhses P, Seiberlich N, Ma D, et al. IR TrueFISP with a goldenâ ratioâ based radial readout: Fast quantification of T1, T2, and proton density. Magn Reson Med 2013; 69: 71 â 81.
dc.identifier.citedreferenceWarntjes JBM, Dahlqvist Leinhard O, West J, Lundberg P. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage. Magn Reson Med 2008; 60: 320 â 329.
dc.identifier.citedreferenceSbrizzi A, van der Heide O, Cloos M, et al. Fast quantitative MRI as a nonlinear tomography problem. Magn Reson Imaging 2018; 46: 56 â 63.
dc.identifier.citedreferenceCheng Câ C, Preiswerk F, Hoge WS, Kuo Tâ H, Madore B. Multipathway multiâ echo (MPME) imaging: All main MR parameters mapped based on a single 3D scan. Magn Reson Med 2019; 81: 1699 â 1713.
dc.identifier.citedreferenceMetere R, Kober T, Möller HE, Schäfer A. Simultaneous quantitative MRI mapping of T1, T2* and magnetic susceptibility with Multiâ Echo MP2RAGE. PLoS One 2017; 12: 1 â 28.
dc.identifier.citedreferenceWeiskopf N, Suckling J, Williams G, et al. Quantitative multiâ parameter mapping of R1, PD*, MT, and R2* at 3T: A multiâ center validation. Front Neurosci 2013; 7.
dc.identifier.citedreferenceNayak KS, Lee HL, Hargreaves BA, Hu BS. Wideband SSFP: Alternating repetition time balanced steady state free precession with increased band spacing. Magn Reson Med 2007; 58: 931 â 938.
dc.identifier.citedreferenceà ukur T, Nishimura DG. Multiple repetition time balanced steadyâ state free precession imaging. Magn Reson Med 2009; 62: 193 â 204.
dc.identifier.citedreferenceLee KJ, Lee Hâ L, Hennig J, Leupold J. Use of simulated annealing for the design of multiple repetition time balanced steadyâ state free precession imaging. Magn Reson Med 2012; 68: 220 â 226.
dc.identifier.citedreferenceDavis L. Handbook of genetic algorithms. New York: Van Nostrand Reinhold; 1991.
dc.identifier.citedreferenceScheffler K, Hennig J. Frequency resolved singleâ shot MR imaging using stochastic kâ space trajectories. Magn Reson Med 1996; 35: 569 â 576.
dc.identifier.citedreferenceHaldar JP, Hernando D, Liang Zâ P. Compressedâ sensing MRI with random encoding. IEEE Trans Med Imaging 2011; 30: 893 â 903.
dc.identifier.citedreferenceLustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182 â 1195.
dc.identifier.citedreferenceErnst RR. Magnetic resonance with stochastic excitation. J Magn Reson 1970; 3: 10 â 27.
dc.identifier.citedreferenceKaiser R. Coherent spectrometry with noise signals. J Magn Reson 1970; 3: 28 â 43.
dc.identifier.citedreferenceKaulisch T, Kolbe H, Ziessow D. Nonlinear response theory in nD NMR with complex stochastic excitation. J Magn Reson Ser A 1996; 121: 42 â 49.
dc.identifier.citedreferenceYe H, Ma D, Jiang Y, et al. Accelerating magnetic resonance fingerprinting (MRF) using tâ blipped simultaneous multislice (SMS) acquisition. Magn Reson Med 2016; 75: 2078 â 2085.
dc.identifier.citedreferenceJiang Y, Ma D, Bhat H, et al. Use of pattern recognition for unaliasing simultaneously acquired slices in simultaneous multislice MR fingerprinting. Magn Reson Med 2017; 78: 1870 â 1876.
dc.identifier.citedreferenceYe H, Cauley SF, Gagoski B, et al. Simultaneous multislice magnetic resonance fingerprinting (SMSâ MRF) with directâ spiral sliceâ GRAPPA (dsâ SG) reconstruction. Magn Reson Med 2017; 77: 1966 â 1974.
dc.identifier.citedreferenceCao X, Ye H, Liao C, Li Q, He H, Zhong J. Fast 3D brain MR fingerprinting based on multiâ axis spiral projection trajectory. Magn Reson Med 2019; 289 â 301.
dc.identifier.citedreferenceLiao C, Bilgic B, Manhard MK, et al. 3D MR fingerprinting with accelerated stackâ ofâ spirals and hybrid slidingâ window and GRAPPA reconstruction. Neuroimage 2017; 162: 13 â 22.
dc.identifier.citedreferenceChen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology 2016; 279: 278 â 286.
dc.identifier.citedreferenceChen Y, Panda A, Pahwa S, et al. Threeâ dimensional MR fingerprinting for quantitative breast imaging. Radiology 2018; 290: 33 â 40.
dc.identifier.citedreferencePanda A, Chen Y, Ropellaâ Panagis K, et al. Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue. J Magn Reson Imaging 2019 [Epub ahead of print] doi: https://doi.org/10.1002/jmri.26717.
dc.identifier.citedreferenceYu AC, Badve C, Ponsky LE, et al. Development of a combined MR fingerprinting and diffusion examination for prostate cancer. Radiology 2017; 283: 729 â 738.
dc.identifier.citedreferenceHamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med 2017; 77: 1446 â 1458.
dc.identifier.citedreferenceHamilton JI, Jiang Y, Ma D, et al. Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction. NMR Biomed 2019; 32: e4041.
dc.identifier.citedreferenceHamilton JI, Jiang Y, Ma D, et al. Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn Reson Imaging 2018; 53: 40 â 51.
dc.identifier.citedreferenceCloos MA, Knoll F, Zhao T, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun 2016; 7: 12445.
dc.identifier.citedreferenceCloos MA, Assländer J, Abbas B, et al. Rapid radial T1 and T2 mapping of the hip articular cartilage with magnetic resonance fingerprinting. J Magn Reson Imaging 2019 [Epub ahead of print] doi: https://doi.org/10.1002/jmri.26615.
dc.identifier.citedreferencePoorman ME, Martin MN, Ma D, et al. Magnetic resonance fingerprinting. Part I: Potential uses, current challenges, and recommendations. J Magn Reson Imaging 2019 [Epub ahead of print] doi: https://doi.org/10.1002/jmri.26836.
dc.identifier.citedreferenceDeshmane A, McGivney DF, Ma D, et al. Partial volume mapping using magnetic resonance fingerprinting. NMR Biomed 2019; 32: e4082.
dc.identifier.citedreferenceMcGivney D, Deshmane A, Jiang Y, et al. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting. Magn Reson Med 2018; 80: 159 â 170.
dc.identifier.citedreferenceSommer K, Amthor T, Doneva M, Koken P, Meineke J, Börnert P. Towards predicting the encoding capability of MR fingerprinting sequences. Magn Reson Imaging 2017; 41: 7 â 14.
dc.identifier.citedreferenceCohen O, Rosen MS. Algorithm comparison for schedule optimization in MR fingerprinting. Magn Reson Imaging 2017; 41: 15 â 21.
dc.identifier.citedreferenceLiu Y, Buck JR, Ikonomidou VN. Generalized minâ max boundâ based MRI pulse sequence design framework for wideâ range T1 relaxometry: A case study on the tissue specific imaging sequence. PLoS One 2017; 12: 1 â 20.
dc.identifier.citedreferenceTeixeira RPAG, Malik SJ, Hajnal JV. Joint system relaxometry (JSR) and Crámerâ Rao lower bound optimization of sequence parameters: A framework for enhanced precision of DESPOT T1 and T2 estimation. Magn Reson Med 2018; 79: 234 â 245.
dc.identifier.citedreferenceZhao B, Haldar JP, Liao C, et al. Optimal experiment design for magnetic resonance fingerprinting: Cramerâ Rao bound meets spin dynamics. IEEE Trans Med Imaging 2019; 38: 844 â 861.
dc.identifier.citedreferenceKara D, Fan M, Hamilton J, Griswold M, Seiberlich N, Brown R. Parameter map error due to normal noise and aliasing artifacts in MR fingerprinting. Magn Reson Med 2019; 81: 3108 â 3123.
dc.identifier.citedreferenceKörzdörfer G, Pfeuffer J, Kluge T, Hensel B, Meyer CH, Nittka M. Effect of spiral undersampling patterns on FISP MRF parameter maps. Magn Reson Imaging 2019 [Epub ahead of print] doi: https://doi.org/10.1016/j.mri.2019.01.011.
dc.identifier.citedreferenceBuonincontri G, Sawiak SJ. MR fingerprinting with simultaneous B1 estimation. Magn Reson Med 2016; 76: 1127 â 1135.
dc.identifier.citedreferenceAssländer J, Glaser SJ, Hennig J. Pseudo steadyâ state free precession for MRâ fingerprinting. Magn Reson Med 2017; 77: 1151 â 1161.
dc.identifier.citedreferenceStolk CC, Sbrizzi A. Understanding the combined effect of kâ space undersampling and transient states excitation in MR Fingerprinting reconstructions. IEEE Trans Med Imaging 2019 [Epub ahead of print] doi: https://doi.org/10.1109/TMI.2019.2900585.
dc.identifier.citedreferenceLankford CL, Does MD. Propagation of error from parameter constraints in quantitative MRI: Example application of multiple spin echo T2 mapping. Magn Reson Med 2018; 79: 673 â 682.
dc.identifier.citedreferenceJang J, Bang K, Jang H, Hwang D. Quality evaluation of noâ reference MR images using multidirectional filters and image statistics. Magn Reson Med 2018; 80: 914 â 924.
dc.identifier.citedreferenceWang CY, Coppo S, Mehta BB, Seiberlich N, Yu X, Griswold MA. Magnetic resonance fingerprinting with quadratic RF phase for measurement of T2* simultaneously with δf, T1, and T2. Magn Reson Med 2019; 81: 1849 â 1862.
dc.identifier.citedreferenceWyatt CR, Smith TB, Sammi MK, Rooney WD, Guimaraes AR. Multiâ parametric T2* magnetic resonance fingerprinting using variable echo times. NMR Biomed 2018; 31: e3951.
dc.identifier.citedreferenceHong T, Han D, Kim Dâ H. Simultaneous estimation of PD, T1, T2, T2*, and Î B0 using magnetic resonance fingerprinting with background gradient compensation. Magn Reson Med 2019; 81: 2614 â 2623.
dc.identifier.citedreferenceRieger B, Akçakaya M, Pariente JC, et al. Time efficient wholeâ brain coverage with MR Fingerprinting using sliceâ interleaved echoâ planarâ imaging. Sci Rep 2018; 8: 6667.
dc.identifier.citedreferenceSu P, Mao D, Liu P, et al. Multiâ parametric estimation of brain hemodynamics with MR Fingerprinting ASL (MRFâ ASL). Magn Reson Med 2017; 78: 1812 â 1823.
dc.identifier.citedreferenceWright KL, Jiang Y, Ma D, et al. Estimation of perfusion properties with MR fingerprinting arterial spin labeling. Magn Reson Imaging 2018; 50: 68 â 77.
dc.identifier.citedreferenceCencini M, Biagi L, Kaggie JD, Schulte RF, Tosetti M, Buonincontri G. Magnetic resonance fingerprinting with dictionaryâ based fat and water separation (DBFW MRF): A multiâ component approach. Magn Reson Med 2019; 81: 3032 â 3045.
dc.identifier.citedreferenceHamilton J, Deshmane A, Griswold M, Seiberlich N. MR fingerprinting with chemical exchange (MRFâ X) for in vivo multiâ component relaxation and exchange rate mapping. In: Proc 24th Annual Meeting ISMRM, Singapore; 2016. p 431.
dc.identifier.citedreferenceCohen O, Huang S, McMahon MT, Rosen MS, Farrar CT. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF). Magn Reson Med 2018; 80: 2449 â 2463.
dc.identifier.citedreferenceZhou Z, Han P, Zhou B, et al. Chemical exchange saturation transfer fingerprinting for exchange rate quantification. Magn Reson Med 2018; 80: 1352 â 1363.
dc.identifier.citedreferenceKörzdörfer G, Jiang Y, Speier P, et al. Magnetic resonance field fingerprinting. Magn Reson Med 2019; 81: 2347 â 2359.
dc.identifier.citedreferenceBadve C, Yu A, Dastmalchian S, et al. MR fingerprinting of adult brain tumors: Initial experience. Am J Neuroradiol 2017; 38: 492 â 499.
dc.identifier.citedreferenceMcGivney DF, Pierre E, Ma D, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging 2014; 33: 2311 â 2322.
dc.identifier.citedreferenceZhao B, Setsompop K, Adalsteinsson E, et al. Improved magnetic resonance fingerprinting reconstruction with lowâ rank and subspace modeling. Magn Reson Med 2018; 79: 933 â 942.
dc.identifier.citedreferenceAssländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med 2018; 79: 83 â 96.
dc.identifier.citedreferenceMazor G, Weizman L, Tal A, Eldar YC. Lowâ rank magnetic resonance fingerprinting. Med Phys 2018; 45: 4066 â 4084.
dc.identifier.citedreferenceHalko N, Martinsson Pâ G, Shkolnisky Y, Tygert M. An algorithm for the principal component analysis of large data sets. SIAM J Sci Comput 2011; 33: 2580 â 2594.
dc.identifier.citedreferenceYang M, Ma D, Jiang Y, et al. Low rank approximation methods for MR fingerprinting with large scale dictionaries. Magn Reson Med 2018; 79: 2392 â 2400.
dc.identifier.citedreferenceLattanzi R, Zhang B, Knoll F, Assländer J, Cloos MA. Phase unwinding for dictionary compression with multiple channel transmission in magnetic resonance fingerprinting. Magn Reson Imaging 2018; 49: 32 â 38.
dc.identifier.citedreferenceCline CC, Chen X, Mailhe B, et al. AIRâ MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting. Magn Reson Imaging 2017; 41: 29 â 40.
dc.identifier.citedreferenceWang Z, Zhang J, Cui D, et al. Magnetic resonance fingerprinting using a fast dictionary searching algorithm: MRFâ ZOOM. IEEE Trans Biomed Eng 2018 [Epub ahead of print] doi:0.110.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.