Show simple item record

Endothelial cell modulation of bone marrow stromal cell osteogenic potential

dc.contributor.authorKaigler, Darnell
dc.contributor.authorKrebsbach, Paul H.
dc.contributor.authorWest, Erin R.
dc.contributor.authorHorger, Kim
dc.contributor.authorHuang, Yen-Chen
dc.contributor.authorMooney, David J.
dc.date.accessioned2020-03-17T18:28:46Z
dc.date.available2020-03-17T18:28:46Z
dc.date.issued2005-04
dc.identifier.citationKaigler, Darnell; Krebsbach, Paul H.; West, Erin R.; Horger, Kim; Huang, Yen-Chen; Mooney, David J. (2005). "Endothelial cell modulation of bone marrow stromal cell osteogenic potential." The FASEB Journal 19(6): 1-26.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154319
dc.description.abstractIn the context of bone development and regeneration, the intimate association of the vascular endothelium with osteogenic cells suggests that endothelial cells (ECs) may directly regulate the differentiation of osteoprogenitor cells. To investigate this question, bone marrow stromal cells (BMSCs) were cultured: in the presence of EC‐conditioned medium, on EC extracellular matrix, and in EC cocultures with and without cell contact. RNA and protein were isolated from ECs and analyzed by reverse transcriptase‐polymerase chain reaction and Western blotting, respectively, for expression of bone morphogenetic protein 2 (BMP‐2). In animal studies, BMSCs and ECs were cotransplanted into severe combined immunodeficient mice on biodegradable polymer matrices, and histomorphometric analysis was performed to determine the extent of new bone and blood vessel formation. ECs significantly increased BMSC osteogenic differentiation in vitro only when cultured in direct contact. ECs expressed BMP‐2, and experiments employing interfering RNA inhibition confirmed its production as contributing to the increased BMSC osteogenic differentiation. In vivo, cotransplantation of ECs with BMSCs resulted in greater bone formation than did transplantation of BMSCs alone. These data suggest that ECs function not only to form the microvasculature that delivers nutrients to developing bone but also to modulate the differentiation of osteoprogenitor cells in vitro and in vivo.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbone development
dc.subject.otherbone regeneration
dc.subject.otherosteoprogenitor cells
dc.subject.otherBMP-2
dc.subject.otherosteogenic differentiation
dc.titleEndothelial cell modulation of bone marrow stromal cell osteogenic potential
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154319/1/fsb2fj042529fje-sup-0001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154319/2/fsb2fj042529fje.pdf
dc.identifier.doi10.1096/fj.04-2529fje
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceOkumura, M., Ohgushi, H., and Tamai, S. ( 1991 ) Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials 12, 411 – 416
dc.identifier.citedreferenceManolagas, S. C., Burton, D. W., and Deftos, L. J. ( 1981 ) 1,25-Dihydroxyvitamin D3 stimulates the alkaline phosphatase activity of osteoblast-like cells. J. Biol. Chem. 256, 7115 – 7117
dc.identifier.citedreferenceD’Ippolito, G., Schiller, P. C., Ricordi, C., Roos, B. A., and Howard, G. A. ( 1999 ) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J. Bone Miner. Res. 14, 1115 – 1122
dc.identifier.citedreferenceCesarone, C. F., Bolognesi, C., and Santi, L. ( 1979 ) Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal. Biochem. 100, 188 – 197
dc.identifier.citedreferenceMooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., and Langer, R. ( 1996 ) Novel approach to fabricate porous sponges of poly( d,l -lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17, 1417 – 1422
dc.identifier.citedreferenceNor, J. E., Peters, M. C., Christensen, J. B., Sutorik, M. M., Linn, S., Khan, M. K., Addison, C. L., Mooney, D. J., and Polverini, P. J. ( 2001 ) Engineering and characterization of functional human microvessels in immunodeficient mice. Lab. Invest. 81, 453 – 463
dc.identifier.citedreferenceBronckers, A. L., Gay, S., Finkelman, R. D., and Butler, W. T. ( 1987 ) Immunolocalization of Gla proteins (osteocalcin) in rat tooth germs: comparison between indirect immunofluorescence, peroxidase-antiperoxidase, avidin-biotin-peroxidase complex, and avidin-biotin-gold complex with silver enhancement. J. Histochem. Cytochem. 35, 825 – 830
dc.identifier.citedreferenceMohan, R. R., Kim, W. J., Chen, L., and Wilson, S. E. ( 1998 ) Bone morphogenic proteins 2 and 4 and their receptors in the adult human cornea. Invest. Ophthalmol. Vis. Sci. 39, 2626 – 2636
dc.identifier.citedreferenceMendes, S. C., Tibbe, J. M., Veenhof, M., Bakker, K., Both, S., Platenburg, P. P., Oner, F. C., De Bruijn, J. D., and Van Blitterswijk, C. A. ( 2002 ) Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng. 8, 911 – 920
dc.identifier.citedreferenceDong, J., Kojima, H., Uemura, T., Kikuchi, M., Tateishi, T., and Tanaka, J. ( 2001 ) In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. J. Biomed. Mater. Res. 57, 208 – 216
dc.identifier.citedreferenceGao, J., Dennis, J. E., Solchaga, L. A., Awadallah, A. S., Goldberg, V. M., and Caplan, A. I. ( 2001 ) Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 7, 363 – 371
dc.identifier.citedreferenceOhgushi, H., Okumura, M., Tamai, S., Shors, E. C., and Caplan, A. I. ( 1990 ) Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J. Biomed. Mater. Res. 24, 1563 – 1570
dc.identifier.citedreferencePelissier, P., Villars, F., Mathoulin-Pelissier, S., Bareille, R., Lafage-Proust, M. H., and Vilamitjana-Amedee, J. ( 2003 ) Influences of vascularization and osteogenic cells on heterotopic bone formation within a madreporic ceramic in rats. Plast. Reconstr. Surg. 111, 1932 – 1941
dc.identifier.citedreferenceVogelin, M. D. E., Jones, N. F., Lieberman, J. R., Baker, J. M., Tsingotjidou, A. S., and Brekke, J. H. ( 2002 ) Prefabrication of bone by use of a vascularized periosteal flap and bone morphogenetic protein. Plast. Reconstr. Surg. 109, 190 – 198
dc.identifier.citedreferenceYajima, H., Tamai, S., Ishida, H., and Kisanuki, O. ( 1995 ) Prefabricated vascularized periosteal grafts using fascial flap transfers. J. Reconstr. Microsurg. 11, 201 – 205
dc.identifier.citedreferenceRomana, M. C., and Masquelet, A. C. ( 1990 ) Vascularized periosteum associated with cancellous bone graft: an experimental study. Plast. Reconstr. Surg. 85, 587 – 592
dc.identifier.citedreferenceMurphy, W. L., Simmons, C. A., Kaigler, D., and Mooney, D. J. ( 2004 ) Bone regeneration via a mineral substrate and induced angiogenesis. J. Dent. Res. 83, 204 – 210
dc.identifier.citedreferenceKaigler, D., Krebsbach, P. H., Polverini, P. J., and Mooney, D. J. ( 2003 ) Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng. 9, 95 – 103
dc.identifier.citedreferenceSchechner, J. S., Nath, A. K., Zheng, L., Kluger, M. S., Hughes, C. C., Sierra-Honigmann, M. R., Lorber, M. I., Tellides, G., Kashgarian, M., Bothwell, A. L., et al. ( 2000 ) In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc. Natl. Acad. Sci. USA 97, 9191 – 9196
dc.identifier.citedreferenceFuchs, S., Baffour, R., Zhou, Y. F., Shou, M., Pierre, A., Tio, F. O., Weissman, N. J., Leon, M. B., Epstein, S. E., and Kornowski, R. ( 2001 ) Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J. Am. Coll. Cardiol. 37, 1726 – 1732
dc.identifier.citedreferenceShen, Q., Goderie, S. K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., and Temple, S. ( 2004 ) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338 – 1340
dc.identifier.citedreferenceUrist, M. R., Lietze, A., Mizutani, H., Takagi, K., Triffitt, J. T., Amstutz, J., DeLange, R., Termine, J., and Finerman, G. A. ( 1982 ) A bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin. Orthop. (162), 219 – 232
dc.identifier.citedreferenceSampath, T. K., Coughlin, J. E., Whetstone, R. M., Banach, D., Corbett, C., Ridge, R. J., Ozkaynak, E., Oppermann, H., and Rueger, D. C. ( 1990 ) Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J. Biol. Chem. 265, 13198 – 13205
dc.identifier.citedreferenceCeleste, A. J., Iannazzi, J. A., Taylor, R. C., Hewick, R. M., Rosen, V., Wang, E. A., and Wozney, J. M. ( 1990 ) Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc. Natl. Acad. Sci. USA 87, 9843 – 9847
dc.identifier.citedreferenceWang, E. A., Rosen, V., Cordes, P., Hewick, R. M., Kriz, M. J., Luxenberg, D. P., Sibley, B. S., and Wozney, J. M. ( 1988 ) Purification and characterization of other distinct bone-inducing factors. Proc. Natl. Acad. Sci. USA 85, 9484 – 9488
dc.identifier.citedreferenceGerber, H. P., Vu, T. H., Ryan, A. M., Kowalski, J., Werb, Z., and Ferrara, N. ( 1999 ) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623 – 628
dc.identifier.citedreferenceZaidi, M., Alam, A. S., Bax, B. E., Shankar, V. S., Bax, C. M., Gill, J. S., Pazianas, M., Huang, C. L., Sahinoglu, T., Moonga, B. S., et al. ( 1993 ) Role of the endothelial cell in osteoclast control: new perspectives. Bone 14, 97 – 102
dc.identifier.citedreferenceMichiels, C., De Leener, F., Arnould, T., Dieu, M., and Remacle, J. ( 1994 ) Hypoxia stimulates human endothelial cells to release smooth muscle cell mitogens: role of prostaglandins and bFGF. Exp. Cell Res. 213, 43 – 54
dc.identifier.citedreferenceStreeten, E. A., and Brandi, M. L. ( 1990 ) Biology of bone endothelial cells. Bone Miner. 10, 85 – 94
dc.identifier.citedreferenceGerritsen, M. E., and Bloor, C. M. ( 1993 ) Endothelial cell gene expression in response to injury. FASEB J. 7, 523 – 532
dc.identifier.citedreferenceJones, A. R., Clark, C. C., and Brighton, C. T. ( 1995 ) Microvessel endothelial cells and pericytes increase proliferation and repress osteoblast phenotypic markers in rat calvarial bone cell cultures. J. Orthop. Res. 13, 553 – 561
dc.identifier.citedreferenceVillanueva, J. E., and Nimni, M. E. ( 1990 ) Promotion of calvarial cell osteogenesis by endothelial cells. J. Bone Miner. Res. 5, 733 – 739
dc.identifier.citedreferenceVillars, F., Guillotin, B., Amedee, T., Dutoya, S., Bordenave, L., Bareille, R., and Amedee, J. ( 2002 ) Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am. J. Physiol. 282, C775 – C785
dc.identifier.citedreferenceLi, W. M., Huang, W. Q., Huang, Y. H., Jiang, D. Z., and Wang, Q. R. ( 2000 ) Positive and negative hematopoietic cytokines produced by bone marrow endothelial cells. Cytokine 12, 1017 – 1023
dc.identifier.citedreferenceBouletreau, P. J., Warren, S. M., Spector, J. A., Peled, Z. M., Gerrets, R. P., Greenwald, J. A., and Longaker, M. T. ( 2002 ) Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast. Reconstr. Surg. 109, 2384 – 2397
dc.identifier.citedreferenceFriedenstein, A. J., Ivanov-Smolenski, A. A., Chajlakjan, R. K., Gorskaya, U. F., Kuralesova, A. I., Latzinik, N. W., and Gerasimow, U. W. ( 1978 ) Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp. Hematol. 6, 440 – 444
dc.identifier.citedreferenceLatsinik, N. V., Gorskaia, I. F., Grosheva, A. G., Domogatskii, S. P., and Kuznetsov, S. A. ( 1986 ) [The stromal colony-forming cell (CFUf) count in the bone marrow of mice and the clonal nature of the fibroblast colonies they form.] Ontogenez 17, 27 – 36 [In Russian]
dc.identifier.citedreferenceOwen, M. ( 1988 ) Marrow stromal stem cells. J. Cell Sci. Suppl. 10, 63 – 76
dc.identifier.citedreferencePatt, H. M., Maloney, M. A., and Flannery, M. L. ( 1982 ) Hematopoietic microenvironment transfer by stromal fibroblasts derived from bone marrow varying in cellularity. Exp. Hematol. 10, 738 – 742
dc.identifier.citedreferenceAshton, B. A., Allen, T. D., Howlett, C. R., Eaglesom, C. C., Hattori, A., and Owen, M. ( 1980 ) Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. (151), 294 – 307
dc.identifier.citedreferenceKrebsbach, P. H., Gu, K., Franceschi, R. T., and Rutherford, R. B. ( 2000 ) Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum. Gene Ther. 11, 1201 – 1210
dc.identifier.citedreferenceShang, Q., Wang, Z., Liu, W., Shi, Y., Cui, L., and Cao, Y. ( 2001 ) Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J. Craniofac. Surg. 12: 586 – 593; discussion 594–595.
dc.identifier.citedreferenceKon, E., Muraglia, A., Corsi, A., Bianco, P., Marcacci, M., Martin, I., Boyde, A., Ruspantini, I., Chistolini, P., Rocca, M., et al. ( 2000 ) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49, 328 – 337
dc.identifier.citedreferenceGysin, R., Wergedal, J. E., Sheng, M. H., Kasukawa, Y., Miyakoshi, N., Chen, S. T., Peng, H., Lau, K. H., Mohan, S., and Baylink, D. J. ( 2002 ) Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats. Gene Ther. 9, 991 – 999
dc.identifier.citedreferenceKrebsbach, P. H., Kuznetsov, S. A., Satomura, K., Emmons, R. V., Rowe, D. W., and Robey, P. G. ( 1997 ) Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63, 1059 – 1069
dc.identifier.citedreferenceKrebsbach, P. H., Kuznetsov, S. A., Bianco, P., and Robey, P. G. ( 1999 ) Bone marrow stromal cells: characterization and clinical application. Crit. Rev. Oral Biol. Med. 10, 165 – 181
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.