Show simple item record

Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst

dc.contributor.authorObrosova, Irina G.
dc.contributor.authorMabley, Jon G.
dc.contributor.authorZsengellér, Zsuzsanna
dc.contributor.authorCharniauskaya, Tamara
dc.contributor.authorAbatan, Omorodola I.
dc.contributor.authorGroves, John T.
dc.contributor.authorSzabó, Csaba
dc.date.accessioned2020-03-17T18:28:54Z
dc.date.available2020-03-17T18:28:54Z
dc.date.issued2005-03
dc.identifier.citationObrosova, Irina G.; Mabley, Jon G.; Zsengellér, Zsuzsanna ; Charniauskaya, Tamara; Abatan, Omorodola I.; Groves, John T.; Szabó, Csaba (2005). "Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst." The FASEB Journal 19(3): 1-21.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154323
dc.description.abstractNitrosative stress, that is, enhanced peroxynitrite formation, has been documented in both experimental and clinical diabetic neuropathy (DN), but its pathogenetic role remains unexplored. This study evaluated the role for nitrosative stress in two animal models of type 1 diabetes: streptozotocin‐diabetic mice and diabetic NOD mice. Control (C) and streptozotocin‐diabetic (D) mice were treated with and without the potent peroxynitrite decomposition catalyst FP15 (5 mg kg−1 d−1) for 1 wk after 8 wk without treatment. Sciatic nerve nitrotyrosine (a marker of peroxynitrite‐induced injury) and poly(ADP‐ribose) immunoreactivities were present in D and absent in C and D+FP15. FP15 treatment corrected sciatic motor and hind‐limb digital sensory nerve conduction deficits and sciatic nerve energy state in D, without affecting those variables in C. Nerve glucose and sorbitol pathway intermediate concentrations were similarly elevated in D and D+FP15 vs C. In diabetic NOD mice, a 7‐day treatment with either 1 or 3 mg kg−1 d−1 FP15 reversed increased tail‐flick latency (a sign of reduced pain sensitivity); the effect of the higher dose was significant as early as 3 days after beginning of the treatment. In conclusion, nitrosative stress plays a major role in DN in, at least, type 1 diabetes. This provides the rationale for development of agents counteracting peroxynitrite formation and promoting peroxynitrite decomposition, and their evaluation in DN.
dc.publisherKluwer Academic/Plenum Publishers
dc.publisherWiley Periodicals, Inc.
dc.subject.othertail-flick latency
dc.subject.otherstreptozotocin-diabetic rats
dc.subject.otherpoly(ADP-ribose) polymerase
dc.subject.otherNOD mice
dc.subject.othernerve
dc.subject.otherconduction deficit
dc.titleRole for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154323/1/fsb2fj041913fje-sup-0001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154323/2/fsb2fj041913fje.pdf
dc.identifier.doi10.1096/fj.04-1913fje
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceCameron, N. E., Cotter, M. A., Horrobin, D. H., and Tritschler, H. J. ( 1998 ) Effects of alpha-lipoic acid on neurovascular function in diabetic rats: interaction with essential fatty acids. Diabetologia 41, 390 – 399
dc.identifier.citedreferencePacher, P., Liaudet, L., Bai, P., Mabley, J. G., Kaminski, P. M., Virag, L., Deb, A., Szabo, E., Ungvari, Z., Wolin, M. S., et al. ( 2003 ) Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 107, 896 – 904
dc.identifier.citedreferenceNassar T., Kadery B., Lotan C., Da’as N., Kleinman Y., Haj-Yehia A. ( 2002 ) Effects of the superoxide dismutase-mimetic compound tempol on endothelial dysfunction in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 436, 111 – 118
dc.identifier.citedreferenceCuzzocrea, S., McDonald, M. C., Mota-Filipe, H., Mazzon, E., Costantino, G., Britti, D., Mazzullo, G., Caputi, A. P., and Thiemermann, C. ( 2000 ) Beneficial effects of tempol, a membrane-permeable radical scavenger, in a rodent model of collagen-induced arthritis. Arthritis Rheum. 43, 320 – 328
dc.identifier.citedreferenceKarmeli, F., Eliakim, R., Okon, E., Samuni, A., and Rachmilewitz, D. ( 1995 ) A stable nitroxide radical effectively decreases mucosal damage in experimental colitis. Gut 37, 386 – 393
dc.identifier.citedreferenceKato, N., Mizuno, K., Makino, M., Suzuki, T., and Yagihashi, S. ( 2000 ) Effects of 15-month aldose reductase inhibition with fidarestat on the experimental diabetic neuropathy in rats. Diabetes Res. Clin. Pract. 50, 77 – 85
dc.identifier.citedreferenceLove, A., Cotter, M. A., and Cameron, N. E. ( 1996 ) Nerve function and regeneration in diabetic and galactosaemic rats: antioxidant and metal chelator effects. Eur. J. Pharmacol. 314, 33 – 39
dc.identifier.citedreferenceKarasu, C., Dewhurst, M., Stevens, E. J., and Tomlinson, D. R. ( 1995 ) Effects of anti-oxidant treatment on sciatic nerve dysfunction in streptozotocin-diabetic rats; comparison with essential fatty acids. Diabetologia 38, 129 – 134
dc.identifier.citedreferenceCameron, N. E., Cotter, M. A., Archibald, V., Dines, K. C., and Maxfield, E. K. ( 1994 ) Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in nondiabetic and streptozotocin-diabetic rats. Diabetologia 37, 449 – 459
dc.identifier.citedreferenceNagamatsu, M., Nickander, K. K., Schmelzer, J. D., Raya, A., Wittrock, D. A., Tritschler, H., and Low, P. A. ( 1995 ) Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diab. Care 18, 1160 – 1167
dc.identifier.citedreferenceHounsom, L., Horrobin, D. F., Tritschler, H., Corder, R., and Tomlinson, D. R. ( 1998 ) A lipoic acid-gamma linolenic acid conjugate is effective against multiple indices of experimental diabetic neuropathy. Diabetologia 41, 839 – 843
dc.identifier.citedreferenceMaitra, I., Serbinova, E., Trischler, H., and Packer, L. ( 1995 ) Alpha-lipoic acid prevents buthionine sulfoximine-induced cataract formation in newborn rats. Free Radic. Biol. Med. 18, 823 – 829
dc.identifier.citedreferencePacker, L., Kraemer, K., and Rimbach, G. ( 2001 ) Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 17, 888 – 895
dc.identifier.citedreferenceSchmidt, R. E., Dorsey, D. A., Beaudet, L. N., Frederick, K. E., Parvin, C. A., Plurad, S. B., and Levisetti, M. G. ( 2003 ) Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy. Am. J. Pathol. 163, 2077 – 2091
dc.identifier.citedreferenceBoulton, A. J. ( 2004 ) The diabetic foot: from art to science. The 18th Camillo Golgi lecture. Diabetologia 47, 1343 – 1353
dc.identifier.citedreferenceLee, J., Hunt, A., and Groves, J. T. ( 1997 ) Rapid decomposition of peroxynitrite by manganese porphyrin-antioxidant redox-couples. Bioorg. Med. Chem. Lett. 7, 2913 – 2918
dc.identifier.citedreferenceLi, F., Szabo, C., Pacher, P., Southan, G. J., Abatan, O. I., Charniauskaya, T., Stevens, M. J., and Obrosova, I. G. ( 2004 ) Evaluation of orally active poly(ADP-ribose) polymerase inhibitor in streptozotocin-diabetic rat model of early peripheral neuropathy. Diabetologia 47, 710 – 717
dc.identifier.citedreferenceObrosova, I. G., Szabo, C., Pacher, P., Hirooka, H., Stevens, M. J., and Yorek, M. A. ( 2004 ) Aldose reductase inhbitor fidarestat counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in experimental diabetic neuropathy. Diabetes 53, Suppl 2, A213 (abstract)
dc.identifier.citedreferenceGupta, S., Chough, E., Daley, J., Oates, P., Tornheim, K., Ruderman, N. B., and Keaney, J. F., Jr. ( 2002 ) Hyperglycemia increases endothelial superoxide that impairs smooth muscle cell Na+-K+-ATPase activity. Am. J. Physiol. Cell Physiol. 282, C560 – C566
dc.identifier.citedreferenceObrosova, I. G., Minchenko, A. G., Vasupuram, R., White, L., Abatan, O. I., Kumagai, A. K., Frank, R. N., and Stevens, M. J. ( 2003 ) Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes 52, 864 – 871
dc.identifier.citedreferenceEl-Remessy, A. B., Abou-Mohamed, G., Caldwell, R. W., and Caldwell, R. B. ( 2003 ) High glucose-induced tyrosine nitration in endothelial cells: role of eNOS uncoupling and aldose reductase activation. Invest. Ophthalmol. Vis. Sci. 44, 3135 – 3143
dc.identifier.citedreferenceObrosova, I. G. ( 2003 ) Update on the pathogenesis of diabetic neuropathy. Curr. Diab. Rep. 3, 439 – 445
dc.identifier.citedreferenceHa, H. C., Hester, L. D., and Snyder, S. H. ( 2002 ) Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc. Natl. Acad. Sci. USA 99, 3270 – 3275
dc.identifier.citedreferenceMinchenko, A. G., Stevens, M. J., White, L., Abatan, O. I., Komjati, K., Pacher, P., Szabo, C., and Obrosova, I. G. ( 2003 ) Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J. 17, 1514 – 1516
dc.identifier.citedreferenceKlotz, L. O., Schroeder, P., and Sies, H. ( 2002 ) Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways. Free Radic. Biol. Med. 33, 737 – 743
dc.identifier.citedreferenceMoro, M. A., Leza, J. C., Lorenzo, P., and Lizasoain, I. ( 1998 ) Peroxynitrite causes aspartate release from dissociated rat cerebellar granule neurones. Free Radic. Res. 28, 193 – 204
dc.identifier.citedreferenceKimelberg, H. K. ( 2004 ) Increased release of excitatory amino acids by the actions of ATP and peroxynitrite on volume-regulated anion channels (VRACs) in astrocytes. Neurochem. Int. 45, 511 – 519
dc.identifier.citedreferenceEllis, E.A., Guberski, D.L., Hutson, B., and Grant, M.B. ( 2002 ) Time course of NADH oxidase, inducible nitric oxide synthase and peroxynitrite in diabetic retinopathy in the BBZ/WOR rat. Nitric oxide: biology and chemistry 6, 295 – 304
dc.identifier.citedreferenceSantilli, F., Cipollone, F., Mezzetti, A., and Chiarelli, F. ( 2004 ) The role of nitric oxide in the development of diabetic angiopathy. Horm. Metab. Res. 36, 319 – 335
dc.identifier.citedreferenceBoulton, A. J., Malik, R. A., Arezzo, J. C., and Sosenko, J. M. ( 2004 ) Diabetic somatic neuropathies. Diab. Care 27, 1458 – 1486
dc.identifier.citedreferenceWriting Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group ( 2002 ) Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287, 2563 – 2569
dc.identifier.citedreferenceHotta, N., Toyota, T., Matsuoka, K., Shigeta, Y., Kikkawa, R., Kaneko, T., Takahashi, A., Sugimura, K., Koike, Y., Ishii, J., Sakamoto, N., and SNK-860 Diabetic Neuropathy Study Group ( 2001 ) Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-wk multicenter placebo-controlled double-blind parallel group study. Diab. Care 24, 1776 – 1782
dc.identifier.citedreferenceObrosova, I. G., Van Huysen, C., Fathallah, L., Cao, X. C., Greene, D. A., and Stevens, M. J. ( 2002 ) An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J. 16, 123 – 125
dc.identifier.citedreferencePrice, S. A., Agthong, S., Middlemas, A. B., and Tomlinson, D. R. ( 2004 ) Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes 53, 1851 – 1856
dc.identifier.citedreferenceThornalley, P. J. ( 2002 ) Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int. Rev. Neurobiol. 50, 37 – 57
dc.identifier.citedreferenceNakamura, J., Kato, K., Hamada, Y., Nakayama, M., Chaya, S., Nakashima, E., Naruse, K., Kasuya, Y., Mizubayashi, R., Miwa, K., et al. ( 1999 ) A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes 48, 2090 – 2095
dc.identifier.citedreferenceMizisin, A. P., Steinhardt, R. C., O’Brien, J. S., and Calcutt, N. A. ( 2001 ) TX14(A), a prosaposin-derived peptide, reverses established nerve disorders in streptozotocin-diabetic rats and prevents them in galactose-fed rats. J. Neuropathol. Exp. Neurol. 60, 953 – 960
dc.identifier.citedreferenceSayers, N. M., Beswick, L. J., Middlemas, A., Calcutt, N. A., Mizisin, A. P., Tomlinson, D. R., and Fernyhough, P. ( 2003 ) Neurotrophin-3 prevents the proximal accumulation of neurofilament proteins in sensory neurons of streptozocin-induced diabetic rats. Diabetes 52, 2372 – 2380
dc.identifier.citedreferenceObrosova, I. G. ( 2002 ) How does glucose generate oxidative stress in peripheral nerve? Int. Rev. Neurobiol. 50, 3 – 35
dc.identifier.citedreferenceCoppey, L. J., Gellett, J. S., Davidson, E. P., Dunlap, J. A., Lund, D. D., and Yorek, M. A. ( 2001 ) Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 50, 1927 – 1937
dc.identifier.citedreferenceCoppey, L. J., Gellett, J. S., Davidson, E. P., Dunlap, J. A., Lund, D. D., Salvemini, D., and Yorek, M. A. ( 2001 ) Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Br. J. Pharmacol. 134, 21 – 29
dc.identifier.citedreferenceBrownlee, M. ( 2001 ) Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813 – 820
dc.identifier.citedreferenceCotter, M. A., and Cameron, N. E. ( 2003 ) Effect of the NAD(P)H oxidase inhibitor, apocynin, on peripheral nerve perfusion and function in diabetic rats. Life Sci. 73, 1813 – 1824
dc.identifier.citedreferenceCameron, N., Tuck, Z., McCabe, L., and Cotter, M. A. ( 2001 ) Effect of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Diabetologia 44, 1161 – 1169
dc.identifier.citedreferenceCheng, C., and Zochodne, D. W. ( 2003 ) Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 52, 2363 – 2371
dc.identifier.citedreferenceHoeldtke, R. D., Bryner, K. D., McNeill, D. R., Hobbs, G. R., Riggs, J. E., Warehime, S. S., Christie, I., Ganser, G., and Van Dyke, K. ( 2002 ) Nitrosative stress, uric acid, and peripheral nerve function in early type 1 diabetes. Diabetes 51, 2817 – 2825
dc.identifier.citedreferenceSzabo, C., Mabley, J. G., Moeller, S. M., Shimanovich, R., Pacher, P., Virag, L., Soriano, F. G., Van Duzer, J. H., Williams, W., Salzman, A. L., et al. ( 2002 ) Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol. Med. 8, 571 – 580
dc.identifier.citedreferenceGarcia Soriano, F., Virag, L., Jagtap, P., Szabo, E., Mabley, J. G., Liaudet, L., Marton, A., Hoyt, D. G., Murthy, K. G., Salzman, A. L., et al. ( 2001 ) Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat. Med. 7, 108 – 113
dc.identifier.citedreferenceVirag, L., and Szabo, C. ( 2002 ) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375 – 429
dc.identifier.citedreferenceVirag, L., Szabo, E., Gergely, P., and Szabo, C. ( 2003 ) Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol. Lett. 140–141, 113 – 124
dc.identifier.citedreferenceGroves, J. T. ( 2004 ) Models and mechanisms of cytochrome P-450 action. In Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed., pp 1 – 44 ( Ortiz de Montellano, P. R., ed) Kluwer Academic/Plenum Publishers, New York
dc.identifier.citedreferenceGroves, J. T., and Marla, S. ( 1995 ) Peroxynitrite-Induced DNA StrandScission Mediated by a Manganese Porphyrin. J. Am. Chem. Soc. 117, 9578 – 9579
dc.identifier.citedreferenceLee, J., Hunt, J. A., and Groves, J. T. ( 1998 ) Mechanisms of iron porphyrin reactions with peroxynitrite. J. Am. Chem. Soc. 120, 7493 – 7501
dc.identifier.citedreferenceShimanovich, R., and Groves, J. T. ( 2001 ) Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin. Arch. Biochem. Biophys. 387, 307 – 317
dc.identifier.citedreferenceGroves, J. T. ( 1999 ) Peroxynitrite: reactive, invasive and enigmatic. Curr. Opinion Chem. Biol. 3, 226 – 235
dc.identifier.citedreferenceMarla, S. S., Lee, J., and Groves, J. T. ( 1997 ) Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. USA 94, 14243 – 14248
dc.identifier.citedreferenceObrosova, I. G., Li, F., Abatan, O. I., Forsell, M. A., Komjati, K., Pacher, P., Szabo, C., and Stevens, M. J. ( 2004 ) Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 53, 711 – 720
dc.identifier.citedreferenceObrosova, I. G., Fathallah, L., Lang, H. J., and Greene, D. A. ( 1999 ) Evaluation of a sorbitol dehydrogenase inhibitor on diabetic peripheral nerve metabolism: a prevention study. Diabetologia 42, 1187 – 1194
dc.identifier.citedreferenceStevens, M. J., Obrosova, I., Cao, X., Van Huysen, C., and Greene, D. A. ( 2000 ) Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49, 1006 – 1015
dc.identifier.citedreferenceZingarelli, B., Cuzzocrea, S., Zsengeller, Z., Salzman, A. L., and Szabo, C. ( 1997 ) Protection against myocardial ischemia and reperfusion injury by 3-aminobenz-amide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc. Res. 36, 205 – 215
dc.identifier.citedreferenceAmetov, A. S., Barinov, A., Dyck, P. J., Hermann, R., Kozlova, N., Litchy, W. J., Low, P. A., Nehrdich, D., Novosadova, M., O’Brien, P. C., et al., and SYDNEY Trial Study Group. ( 2003 ) The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diab. Care 26, 770 – 776
dc.identifier.citedreferenceZiegler, D., Nowak, H., Kempler, P., Vargha, P., and Low, P. A. ( 2004 ) Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diab. Med. 21, 114 – 121
dc.identifier.citedreferenceVan Dam, P. S., Bravenboe, B., van Asbeck, B. S., van Oirschot, J. F., Marx, J. J., and Gispen, W. H. ( 1996 ) Effects of insulin treatment on endoneurial and systemic oxidative stress in relation to nerve conduction in streptozotocin-diabetic rats. Eur. J. Clin. Invest. 26, 1143 – 1149
dc.identifier.citedreferenceSchmeichel, A. M., Schmelzer, J. D., and Low, P. A. ( 2003 ) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52, 165 – 171
dc.identifier.citedreferencePurves, T., Middlemas, A., Agthong, S., Jude, E. B., Boulton, A. J., Fernyhough, P., and Tomlinson, D. R. ( 2001 ) A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J. 15, 2508 – 2514
dc.identifier.citedreferenceHounsom, L., Corder, R., Patel, J., and Tomlinson, D. R. ( 2001 ) Oxidative stress participates in the breakdown of neuronal phenotype in experimental diabetic neuropathy. Diabetologia 44, 424 – 428
dc.identifier.citedreferenceSagara, M., Satoh, J., Wada, R., Yagihashi, S., Takahashi, K., Fukuzawa, M., Muto, G., Muto, Y., and Toyota, T. ( 1996 ) Inhibition of development of peripheral neuropathy in streptozotocin-induced diabetic rats with N-acetylcysteine. Diabetologia 39, 263 – 269
dc.identifier.citedreferenceCoppey, L. J., Gellett, J. S., Davidson, E. P., and Yorek, M. A. ( 2003 ) Preventing superoxide formation in epineurial arterioles of the sciatic nerve from diabetic rats restores endothelium-dependent vasodilation. Free Radic. Res. 37, 33 – 40
dc.identifier.citedreferenceMabley, J. G., Liaudet, L., Pacher, P., Southan, G. J., Salzman, A. L., Groves, J. T., and Szabo, C. ( 2002 ) Part II: beneficial effects of the peroxynitrite decomposition catalyst FP15 in murine models of arthritis and colitis. Mol. Med. 8, 581 – 590
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.