Show simple item record

Phosphatidylinositol 3‐kinase and Akt effectors mediate insulin‐like growth factor‐I neuroprotection in dorsal root ganglia neurons

dc.contributor.authorLeinninger, Gina M.
dc.contributor.authorBackus, Carey
dc.contributor.authorUhler, Michael D.
dc.contributor.authorLentz, Stephen I.
dc.contributor.authorFeldman, Eva L.
dc.date.accessioned2020-03-17T18:28:57Z
dc.date.available2020-03-17T18:28:57Z
dc.date.issued2004-10
dc.identifier.citationLeinninger, Gina M.; Backus, Carey; Uhler, Michael D.; Lentz, Stephen I.; Feldman, Eva L. (2004). "Phosphatidylinositol 3‐kinase and Akt effectors mediate insulin‐like growth factor‐I neuroprotection in dorsal root ganglia neurons." The FASEB Journal 18(13): 1544-1546.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154325
dc.description.abstractInsulin‐like growth factor‐I (IGF‐I) protects neurons of the peripheral nervous system from apoptosis, but the underlying signaling pathways are not well understood. We studied IGF‐I mediated signaling in embryonic dorsal root ganglia (DRG) neurons. DRG neurons express IGF‐I receptors (IGF‐IR), and IGF‐I activates the phosphatidylinositol 3‐kinase (PI3K)/Akt pathway. High glucose exposure induces apoptosis, which is inhibited by IGF‐I through the PI3K/Akt pathway. IGF‐I stimulation of the PI3K/Akt pathway phosphorylates three known Akt effectors: the survival transcription factor cyclic AMP response element binding protein (CREB) and the pro‐apoptotic effector proteins glycogen synthase kinase‐3β (GSK‐3β) and forkhead (FKHR). IGF‐I regulates survival at the nuclear level through accumulation of phospho‐Akt in DRG neuronal nuclei, increased CREB‐mediated transcription, and nuclear exclusion of FKHR. High glucose increases expression of the pro‐apoptotic Bcl protein Bim (a transcriptional target of FKHR). However, IGF‐I does not regulate Bim or anti‐apoptotic Bcl‐xL protein expression levels, which suggests that IGF‐I neuroprotection is not through regulation of their expression. High glucose also induces loss of the initiator caspase‐9 and increases caspase‐3 cleavage, effects blocked by IGF‐I. These data suggest that IGF‐I prevents apoptosis in DRG neurons by regulating PI3K/Akt pathway effectors, including GSK‐3β, CREB, and FKHR, and by blocking caspase activation.
dc.publisherWiley Periodicals, Inc.
dc.publisherFederation of American Societies for Experimental Biology
dc.subject.otherapoptosis
dc.subject.otherglucose
dc.subject.otherCREB FKHR
dc.subject.otherdorsal root ganglia neurons
dc.subject.otherinsulin‐like growth factor
dc.titlePhosphatidylinositol 3‐kinase and Akt effectors mediate insulin‐like growth factor‐I neuroprotection in dorsal root ganglia neurons
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154325/1/fsb2fj041581fje.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154325/2/fsb2fj041581fje-sup-0001.pdf
dc.identifier.doi10.1096/fj.04-1581fje
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceMayr, B., and Montminy, M. 2001 Transcriptional regulation by the phosphorylation‐dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599 – 609
dc.identifier.citedreferenceFederici, M., Hribal, M., Perego, L., Ranalli, M., Caradonna, Z., Perego, C., Usellini, L., Nano, R., Bonini, P., Bertuzzi, F., et al. 2001 High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50, 1290 – 1301
dc.identifier.citedreferenceMayfield, J. 1998 Diagnosis and classification of diabetes mellitus: new criteria. Am. Fam. Physician 58, 1355 – 1370
dc.identifier.citedreferenceMedina‐Kauwe, L. K., Maguire, M., Kasahara, N., and Kedes, L. 2001 Nonviral gene delivery to human breast cancer cells by targeted Ad5 penton proteins. Gene Ther. 8, 1753 – 1761
dc.identifier.citedreferenceMu, X., Silos‐Santiago, I., Carroll, S. L., and Snider, W. D. 1993 Neurotrophin receptor genes are expressed in distinct patterns in developing dorsal root ganglia. J. Neurosci. 13, 4029 – 4041
dc.identifier.citedreferenceFederici, M., Lauro, D., D’Adamo, M., Giovannone, B., Porzio, O., Mellozzi, M., Tamburrano, G., Sbraccia, P., and Sesti, G. 1998 Expression of insulin/IGF‐I hybrid receptors is increased in skeletal muscle of patients with chronic primary hyperinsulinemia. Diabetes 47, 87 – 92
dc.identifier.citedreferenceKim, B., Leventhal, P. S., Saltiel, A. R., and Feldman, E. L. 1997 Insulin‐like growth factor‐I‐mediated neurite outgrowth in vitro requires MAP kinase activation. J. Biol. Chem. 272, 21268 – 21273
dc.identifier.citedreferenceCreedon, D. J., Johnson, E. M., and Lawrence, J. C. 1996 Mitogen‐activated protein kinase‐independent pathways mediate the effects of nerve growth factor and cAMP on neuronal survival. J. Biol. Chem. 271, 20713 – 20718
dc.identifier.citedreferenceCrowder, R. J., and Freeman, R. S. 1998 Phosphatidylinositol 3‐kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor‐dependent sympathetic neurons. J. Neurosci. 18, 2933 – 2943
dc.identifier.citedreferencevan Obberghen, E. 1994 Signalling through the insulin receptor and the insulin‐like growth factor‐I receptor. Diabetologia 37, Suppl 2, S125 – S134
dc.identifier.citedreferenceToker, A. 2000 Protein kinases as mediators of phosphoinositide 3‐kinase signaling. Mol. Pharmacol. 57, 652 – 658
dc.identifier.citedreferenceTang, E. D., Nunez, G., Barr, F. G., and Guan, K. L. 1999 Negative regulation of the forkhead transcription factor FKHR by Akt. J. Biol. Chem. 274, 16741 – 16746
dc.identifier.citedreferenceGuo, S., Rena, G., Cichy, S., He, X., Cohen, P., and Unterman, T. 1999 Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin‐like growth factor‐binding protein‐1 promoter activity through a conserved insulin response sequence. J. Biol. Chem. 274, 17184 – 17192
dc.identifier.citedreferenceGilley, J., Coffer, P. J., and Ham, J. 2003 FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J. Cell Biol. 162, 613 – 622
dc.identifier.citedreferencePutcha, G. V., Moulder, K. L., Golden, J. P., Bouillet, P., Adams, J. A., Strasser, A., and Johnson, E. M. 2001 Induction of BIM, a proapoptotic BH3‐only BCL‐2 family member, is critical for neuronal apoptosis. Neuron 29, 615 – 628
dc.identifier.citedreferenceCheng, E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., and Korsmeyer, S. J. 2001 BCL‐2, BCL‐X(L) sequester BH3 domain‐only molecules preventing BAX‐and BAK‐mediated mitochondrial apoptosis. Mol. Cell 8, 705 – 711
dc.identifier.citedreferenceCohen, G. M. 1997 Caspases: the executioners of apoptosis. Biochem. J. 326, 1 – 16
dc.identifier.citedreferenceChen, M., and Wang, J. 2002 Initiator caspases in apoptosis signaling pathways. Apoptosis 7, 313 – 319
dc.identifier.citedreferenceEichler, M. E., and Rich, K. M. 1989 Death of sensory ganglion neurons after acute withdrawal of nerve growth factor in dissociated cell cultures. Brain Res. 482, 340 – 346
dc.identifier.citedreferenceHetman, M., Cavanaugh, J. E., Kimelman, D., and Xia, Z. 2000 Role of glycogen synthase kinase‐3beta in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20, 2567 – 2574
dc.identifier.citedreferenceWalton, M., Woodgate, A. M., Muravlev, A., Xu, R., During, M. J., and Dragunow, M. 1999 CREB phosphorylation promotes nerve cell survival. J. Neurochem. 73, 1836 – 1842
dc.identifier.citedreferenceLonze, B. E., Riccio, A., Cohen, S., and Ginty, D. D. 2002 Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371 – 385
dc.identifier.citedreferenceThomas, M. J., Umayahara, Y., Shu, H., Centrella, M., Rotwein, P., and McCarthy, T. L. 1996 Identification of the cAMP response element that controls transcriptional activation of the insulin‐like growth factor‐I gene by prostaglandin E2 in osteoblasts. J. Biol. Chem. 271, 21835 – 21841
dc.identifier.citedreferenceMcDonald, E. S., and Windebank, A. J. 2002 Cisplatin‐induced apoptosis of DRG neurons involves bax redistribution and cytochrome c release but not fas receptor signaling. Neurobiol. Dis. 9, 220 – 233
dc.identifier.citedreferenceFujita, E., Egashira, J., Urase, K., Kuida, K., and Momoi, T. 2001 Caspase‐9 processing by caspase‐3 via a feedback amplification loop in vivo. Cell Death Differ. 8, 335 – 344
dc.identifier.citedreferenceCardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S., and Reed, J. C. 1998 Regulation of cell death protease caspase‐9 by phosphorylation. Science 282, 1318 – 1321
dc.identifier.citedreferenceGao, W. Q., Shinsky, N., Ingle, G., Beck, K., Elias, K. A., and Powell‐Braxton, L. 1999 IGF‐I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF‐I treatment. J. Neurobiol. 39, 142 – 152
dc.identifier.citedreferenceLeinninger, G. M., Meyer, G. E., and Feldman, E. L. 2003 IGFs and the Nervous System. In Insulin‐Like Growth Factors ( LeRoith, D., Zumkeller, W., and Baxter, R., eds) Eurekah.com, http://www.eurekah.com/chapter.php ?chapid=975&bookid=34&catid=19
dc.identifier.citedreferenceLewis, M. E., Neff, N. T., Contreras, P. C., Stong, D. B., Oppenheim, R. W., Grebow, P. E., and Vaught, J. L. 1993 Insulin‐like growth factor‐I: Potential for treatment of motor neuronal disorders. Exp. Neurol. 124, 73 – 88
dc.identifier.citedreferenceRussell, J. W., Windebank, A. J., Schenone, A., and Feldman, E. L. 1998 Insulin‐like growth factor‐I prevents apoptosis in neurons after nerve growth factor withdrawal. J. Neurobiol. 36, 455 – 467
dc.identifier.citedreferenceJones, D. M., Tucker, B. A., Rahimtula, M., and Mearow, K. M. 2003 The synergistic effects of NGF and IGF‐1 on neurite growth in adult sensory neurons: convergence on the PI 3‐kinase signaling pathway. J. Neurochem. 86, 1116 – 1128
dc.identifier.citedreferenceRabinovsky, E. D., Gelir, E., Gelir, S., Lui, H., Kattash, M., DeMayo, F. J., Shenaq, S. M., and Schwartz, R. J. 2003 Targeted expression of IGF‐1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J. 17, 53 – 55
dc.identifier.citedreferencevan Golen, C. M., Schwab, T. S., Woods Ignatoski, K. M., Ethier, S. P., and Feldman, E. L. 2001 PTEN/MMAC1 overexpression decreases insulin‐like growth factor‐I‐mediated protection from apoptosis in neuroblastoma cells. Cell Growth Differ. 12, 371 – 378
dc.identifier.citedreferencePárrizas, M., Saltiel, A. R., and LeRoith, D. 1997 Insulin‐like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3’‐kinase and mitogen‐activated protein kinase pathways. J. Biol. Chem. 272, 154 – 161
dc.identifier.citedreferenceZheng, W. H., Kar, S., and Quirion, R. 2002 Insulin‐like growth factor‐1‐induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3‐kinase/Akt kinase and role of this pathway in insulin‐like growth factor‐1‐induced survival of cultured hippocampal neurons. Mol. Pharmacol. 62, 225 – 233
dc.identifier.citedreferenceDudek, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D. R., and Greenberg, M. E. 1997 Regulation of neuronal survival by the serine‐threonine protein kinase Akt. Science 275, 661 – 665
dc.identifier.citedreferenceLinseman, D. A., Phelps, R. A., Bouchard, R. J., Le, S. S., Laessig, T. A., McClure, M. L., and Heidenreich, K. A. 2002 Insulin‐like growth factor‐I blocks Bcl‐2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons. J. Neurosci. 22, 9287 – 9297
dc.identifier.citedreferenceRussell, J. W., Golovoy, D., Vincent, A. M., Mahendru, P., Olzmann, J. A., Mentzer, A., and Feldman, E. L. 2002 High glucose induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 16, 1738 – 1748
dc.identifier.citedreferenceRussell, J. W., Sullivan, K. A., Windebank, A. J., Herrmann, D. N., and Feldman, E. L. 1999 Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol. Dis. 6, 347 – 363
dc.identifier.citedreferenceKorinkova, P., and Lodin, Z. 1976 The metabolism of glucose of nerve cells cultivated under different conditions. Acta Histochem. 56, 47 – 65
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.