Extracellular histones are essential effectors of C5aR‐ and C5L2‐mediated tissue damage and inflammation in acute lung injury
dc.contributor.author | Bosmann, Markus | |
dc.contributor.author | Grailer, Jamison J. | |
dc.contributor.author | Ruemmler, Robert | |
dc.contributor.author | Russkamp, Norman F. | |
dc.contributor.author | Zetoune, Firas S. | |
dc.contributor.author | Sarma, J. Vidya | |
dc.contributor.author | Standiford, Theodore J. | |
dc.contributor.author | Ward, Peter A. | |
dc.date.accessioned | 2020-03-17T18:29:08Z | |
dc.date.available | 2020-03-17T18:29:08Z | |
dc.date.issued | 2013-11 | |
dc.identifier.citation | Bosmann, Markus; Grailer, Jamison J.; Ruemmler, Robert; Russkamp, Norman F.; Zetoune, Firas S.; Sarma, J. Vidya; Standiford, Theodore J.; Ward, Peter A. (2013). "Extracellular histones are essential effectors of C5aR‐ and C5L2‐mediated tissue damage and inflammation in acute lung injury." The FASEB Journal 27(12): 5010-5021. | |
dc.identifier.issn | 0892-6638 | |
dc.identifier.issn | 1530-6860 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/154331 | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Federation of American Societies for Experimental Biology | |
dc.subject.other | complement | |
dc.subject.other | cytotoxic factors | |
dc.title | Extracellular histones are essential effectors of C5aR‐ and C5L2‐mediated tissue damage and inflammation in acute lung injury | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154331/1/fsb2027012034.pdf | |
dc.identifier.doi | 10.1096/fj.13-236380 | |
dc.identifier.source | The FASEB Journal | |
dc.identifier.citedreference | Gerard, N. P., Lu, B., Liu, P., Craig, S., Fujiwara, Y., Okinaga, S., and Gerard, C. ( 2005 ) An anti‐inflammatory function for the complement anaphylatoxin C5a‐binding protein, C5L2. J. Biol. Chem. 280, 39677 – 39680 | |
dc.identifier.citedreference | Li, P., Li, M., Lindberg, M. R., Kennett, M. J., Xiong, N., and Wang, Y. ( 2010 ) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853 – 1862 | |
dc.identifier.citedreference | Fuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., Weinrauch, Y., Brinkmann, V., and Zychlinsky, A. ( 2007 ) Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231 – 241 | |
dc.identifier.citedreference | Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., Patel, K. D., Chakrabarti, S., McAvoy, E., Sinclair, G. D., Keys, E. M., Allen‐Vercoe, E., Devinney, R., Doig, C. J., Green, F. H., and Kubes, P. ( 2007 ) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463 – 469 | |
dc.identifier.citedreference | Fuchs, T. A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D. D., Jr., Wrobleski, S. K., Wakefield, T. W., Hartwig, J. H., and Wagner, D. D. ( 2010 ) Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. U. S. A. 107, 15880 – 15885 | |
dc.identifier.citedreference | Bernard, G. R., Artigas, A., Brigham, K. L., Carlet, J., Falke, K., Hudson, L., Lamy, M., Legall, J. R., Morris, A., and Spragg, R. ( 1994 ) The American‐European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Resp. Crit. Care Med. 149, 818 – 824 | |
dc.identifier.citedreference | Paine, R., 3rd, Standiford, T. J., Dechert, R. E., Moss, M., Martin, G. S., Rosenberg, A. L., Thannickal, V. J., Burnham, E. L., Brown, M. B., and Hyzy, R. C. ( 2012 ) A randomized trial of recombinant human granulocyte‐macrophage colony stimulating factor for patients with acute lung injury. Crit. Care Med. 40, 90 – 97 | |
dc.identifier.citedreference | Bosmann, M., Grailer, J. J., Zhu, K., Matthay, M. A., Sarma, J. V., Zetoune, F. S., and Ward, P. A. ( 2012 ) Anti‐inflammatory effects of beta2 adrenergic receptor agonists in experimental acute lung injury. FASEB J. | |
dc.identifier.citedreference | Monestier, M., Fasy, T. M., Losman, M. J., Novick, K. E., and Muller, S. ( 1993 ) Structure and binding properties of monoclonal antibodies to core histones from autoimmune mice. Mol. Immunol. 30, 1069 – 1075 | |
dc.identifier.citedreference | Xu, J., Zhang, X., Pelayo, R., Monestier, M., Ammollo, C. T., Semeraro, F., Taylor, F. B., Esmon, N. L., Lupu, F., and Esmon, C. T. ( 2009 ) Extracellular histones are major mediators of death in sepsis. Nat. Med. 15, 1318 – 1321 | |
dc.identifier.citedreference | Larsen, G. L., McCarthy, K., Webster, R. O., Henson, J., and Henson, P. M. ( 1980 ) A differential effect of C5a and C5a des Arg in the induction of pulmonary inflammation. Am. J. Pathol. 100, 179 – 192 | |
dc.identifier.citedreference | Karsten, C. M., Pandey, M. K., Figge, J., Kilchenstein, R., Taylor, P. R., Rosas, M., McDonald, J. U., Orr, S. J., Berger, M., Petzold, D., Blanchard, V., Winkler, A., Hess, C., Reid, D. M., Majoul, I. V., Strait, R. T., Harris, N. L., Kohl, G., Wex, E., Ludwig, R., Zillikens, D., Nimmerjahn, F., Finkelman, F. D., Brown, G. D., Ehlers, M., and Kohl, J. ( 2012 ) Anti‐inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin‐1. Nat. Med. 18, 1401 – 1406 | |
dc.identifier.citedreference | Bamberg, C. E., Mackay, C. R., Lee, H., Zahra, D., Jackson, J., Lim, Y. S., Whitfeld, P. L., Craig, S., Corsini, E., Lu, B., Gerard, C., and Gerard, N. P. ( 2010 ) The C5a receptor (C5aR) C5L2 is a modulator of C5aR‐mediated signal transduction. J. Biol. Chem. 285, 7633 – 7644 | |
dc.identifier.citedreference | Garcia, C. C., Weston‐Davies, W., Russo, R. C., Tavares, L. P., Rachid, M. A., Alves‐Filho, J. C., Machado, A. V., Ryffel, B., Nunn, M. A., and Teixeira, M. M. ( 2013 ) Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. PloS One 8, e64443 | |
dc.identifier.citedreference | Kanse, S. M., Gallenmueller, A., Zeerleder, S., Stephan, F., Rannou, O., Denk, S., Etscheid, M., Lochnit, G., Krueger, M., and Huber‐Lang, M. ( 2012 ) Factor VII‐activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a. J. Immunol. 188, 2858 – 2865 | |
dc.identifier.citedreference | Bosch, X., Poch, E., and Grau, J. M. ( 2009 ) Rhabdomyolysis and acute kidney injury. N. Engl. J. Med. 361, 62 – 72 | |
dc.identifier.citedreference | Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. ( 2010 ) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104 – 107 | |
dc.identifier.citedreference | Abrams, S. T., Zhang, N., Manson, J., Liu, T., Dart, C., Baluwa, F., Wang, S. S., Brohi, K., Kipar, A., Yu, W., Wang, G., and Toh, C. H. ( 2013 ) Circulating histones are mediators of trauma‐associated lung injury. Am. J. Respir. Crit. Care Med. 187, 160 – 169 | |
dc.identifier.citedreference | Hirsch, J. G. ( 1958 ) Bactericidal action of histone. J. Exp. Med. 108, 925 – 944 | |
dc.identifier.citedreference | Lee, D. Y., Huang, C. M., Nakatsuji, T., Thiboutot, D., Kang, S. A., Monestier, M., and Gallo, R. L. ( 2009 ) Histone H4 is a major component of the antimicrobial action of human sebocytes. J. Invest. Dermatol. 129, 2489 – 2496 | |
dc.identifier.citedreference | Allam, R., Scherbaum, C. R., Darisipudi, M. N., Mulay, S. R., Hagele, H., Lichtnekert, J., Hagemann, J. H., Rupanagudi, K. V., Ryu, M., Schwarzenberger, C., Hohenstein, B., Hugo, C., Uhl, B., Reichel, C. A., Krombach, F., Monestier, M., Liapis, H., Moreth, K., Schaefer, L., and Anders, H. J. ( 2012 ) Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J. Am. Soc. Nephrol. 23, 1375 – 1388 | |
dc.identifier.citedreference | Friggeri, A., Banerjee, S., Xie, N., Cui, H., De Freitas, A., Zerfaoui, M., Dupont, H., Abraham, E., and Liu, G. ( 2012 ) Extracellular histones inhibit efferocytosis. Mol. Med. 18, 825 – 833 | |
dc.identifier.citedreference | Caudrillier, A., Kessenbrock, K., Gilliss, B. M., Nguyen, J. X., Marques, M. B., Monestier, M., Toy, P., Werb, Z., and Looney, M. R. ( 2012 ) Platelets induce neutrophil extracellular traps in transfusion‐related acute lung injury. J. Clin. Invest. 122, 2661 – 2671 | |
dc.identifier.citedreference | Saffarzadeh, M., Juenemann, C., Queisser, M. A., Lochnit, G., Barreto, G., Galuska, S. P., Lohmeyer, J., and Preissner, K. T. ( 2012 ) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PloS One 7, e32366 | |
dc.identifier.citedreference | Xu, J., Zhang, X., Monestier, M., Esmon, N. L., and Esmon, C. T. ( 2011 ) Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol. 187, 2626 – 2631 | |
dc.identifier.citedreference | Goss, C. H., Brower, R. G., Hudson, L. D., and Rubenfeld, G. D. ( 2003 ) Incidence of acute lung injury in the United States. Crit. Care Med. 31, 1607 – 1611 | |
dc.identifier.citedreference | Rubenfeld, G. D., Caldwell, E., Peabody, E., Weaver, J., Martin, D. P., Neff, M., Stern, E. J., and Hudson, L. D. ( 2005 ) Incidence and outcomes of acute lung injury. N Engl. J. Med. 353, 1685 – 1693 | |
dc.identifier.citedreference | Erickson, S. E., Martin, G. S., Davis, J. L., Matthay, M. A., and Eisner, M. D. ( 2009 ) Recent trends in acute lung injury mortality: 1996–2005. Crit. Care Med. 37, 1574 – 1579 | |
dc.identifier.citedreference | Matthay, M. A., Ware, L. B., and Zimmerman, G. A. ( 2012 ) The acute respiratory distress syndrome. J. Clin. Invest. 122, 2731 – 2740 | |
dc.identifier.citedreference | Matthay, M. A., and Zemans, R. L. ( 2011 ) The acute respiratory distress syndrome: pathogenesis and treatment. Ann. Rev. Pathol. 6, 147 – 163 | |
dc.identifier.citedreference | Huber‐Lang, M., Sarma, J. V., Zetoune, F. S., Rittirsch, D., Neff, T. A., McGuire, S. R., Lambris, J. D., Warner, R. L., Flierl, M. A., Hoesel, L. M., Gebhard, F., Younger, J. G., Drouin, S. M., Wetsel, R. A., and Ward, P. A. ( 2006 ) Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12, 682 – 687 | |
dc.identifier.citedreference | Bosmann, M., and Ward, P. A. ( 2012 ) Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. Adv. Exp. Med. Biol. 946, 147 – 159 | |
dc.identifier.citedreference | Sun, L., Guo, R. F., Gao, H., Sarma, J. V., Zetoune, F. S., and Ward, P. A. ( 2009 ) Attenuation of IgG immune complex‐induced acute lung injury by silencing C5aR in lung epithelial cells. FASEB J. 23, 3808 – 3818 | |
dc.identifier.citedreference | Martin, T. R., and Matute‐Bello, G. ( 2011 ) Experimental models and emerging hypotheses for acute lung injury. Crit. Care Clin. 27, 735 – 752 | |
dc.identifier.citedreference | Ward, P. A. ( 2003 ) Acute lung injury: how the lung inflammatory response works. Eur. Respir. J. Suppl. 44, 22s – 23s | |
dc.identifier.citedreference | Martin, T. R., Hagimoto, N., Nakamura, M., and Matute‐Bello, G. ( 2005 ) Apoptosis and epithelial injury in the lungs. Proc. Am. Thorac. Soc. 2, 214 – 220 | |
dc.identifier.citedreference | Gao, H., Neff, T., and Ward, P. A. ( 2006 ) Regulation of lung inflammation in the model of IgG immune‐complex injury. Ann. Rev. Pathol. 1, 215 – 242 | |
dc.identifier.citedreference | Warren, J. S., Yabroff, K. R., Remick, D. G., Kunkel, S. L., Chensue, S. W., Kunkel, R. G., Johnson, K. J., and Ward, P. A. ( 1989 ) Tumor necrosis factor participates in the pathogenesis of acute immune complex alveolitis in the rat. J. Clin. Invest. 84, 1873 – 1882 | |
dc.identifier.citedreference | Ricklin, D., Hajishengallis, G., Yang, K., and Lambris, J. D. ( 2010 ) Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785 – 797 | |
dc.identifier.citedreference | Guo, R. F., and Ward, P. A. ( 2005 ) Role of C5a in inflammatory responses. Ann. Rev. Immunol. 23, 821 – 852 | |
dc.identifier.citedreference | Sarma, J. V., and Ward, P. A. ( 2011 ) The complement system. Cell Tissue Res. 343, 227 – 235 | |
dc.identifier.citedreference | Webster, R. O., Larsen, G. L., and Henson, P. M. ( 1982 ) In vivo clearance and tissue distribution of C5a and C5a des arginine complement fragments in rabbits. J. Clin. Invest. 70, 1177 – 1183 | |
dc.identifier.citedreference | Gerard, C., and Gerard, N. P. ( 1994 ) C5A anaphylatoxin and its seven transmembrane‐segment receptor. Ann. Rev. Immunol. 12, 775 – 808 | |
dc.identifier.citedreference | Gerard, N. P., and Gerard, C. ( 1991 ) The chemotactic receptor for human C5a anaphylatoxin. Nature 349, 614 – 617 | |
dc.identifier.citedreference | Bosmann, M., Haggadone, M. D., Hemmila, M. R., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2012 ) Complement activation product C5a is a selective suppressor of TLR4‐induced, but not TLR3‐induced, production of IL‐27(p28) from macrophages. J. Immunol. 188, 5086 – 5093 | |
dc.identifier.citedreference | Gotts, J. E., and Matthay, M. A. ( 2011 ) Mesenchymal stem cells and acute lung injury. Crit. Care Clin. 27, 719 – 733 | |
dc.identifier.citedreference | Lalli, P. N., Strainic, M. G., Yang, M., Lin, F., Medof, M. E., and Heeger, P. S. ( 2008 ) Locally produced C5a binds to T cell‐expressed C5aR to enhance effector T‐cell expansion by limiting antigen‐induced apoptosis. Blood 112, 1759 – 1766 | |
dc.identifier.citedreference | Strainic, M. G., Liu, J., Huang, D., An, F., Lalli, P. N., Muqim, N., Shapiro, V. S., Dubyak, G. R., Heeger, P. S., and Medof, M. E. ( 2008 ) Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425 – 435 | |
dc.identifier.citedreference | Riedemann, N. C., Guo, R. F., Sarma, V. J., Laudes, I. J., Huber‐Lang, M., Warner, R. L., Albrecht, E. A., Speyer, C. L., and Ward, P. A. ( 2002 ) Expression and function of the C5a receptor in rat alveolar epithelial cells. J. Immunol. 168, 1919 – 1925 | |
dc.identifier.citedreference | Wetsel, R. A. ( 1995 ) Expression of the complement C5a anaphylatoxin receptor (C5aR) on non‐myeloid cells. Immunol. Lett. 44, 183 – 187 | |
dc.identifier.citedreference | Drouin, S. M., Kildsgaard, J., Haviland, J., Zabner, J., Jia, H. P., McCray, P. B. Jr., Tack, B. F., and Wetsel, R. A. ( 2001 ) Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J. Immunol. 166, 2025 – 2032 | |
dc.identifier.citedreference | Kwan, W. H., van der Touw, W., Paz‐Artal, E., Li, M. O., and Heeger, P. S. ( 2013 ) Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J. Exp. Med. 210, 257 – 268 | |
dc.identifier.citedreference | Dunkelberger, J., Zhou, L., Miwa, T., and Song, W. C. ( 2012 ) C5aR expression in a novel GFP reporter gene knockin mouse: implications for the mechanism of action of C5aR signaling in T cell immunity. J. Immunol. 188, 4032 – 4042 | |
dc.identifier.citedreference | Cain, S. A., and Monk, P. N. ( 2002 ) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des‐Arg(74). J. Biol. Chem. 277, 7165 – 7169 | |
dc.identifier.citedreference | Okinaga, S., Slattery, D., Humbles, A., Zsengeller, Z., Morteau, O., Kinrade, M. B., Brodbeck, R. M., Krause, J. E., Choe, H. R., Gerard, N. P., and Gerard, C. ( 2003 ) C5L2, a nonsignaling C5A binding protein. Biochemistry 42, 9406 – 9415 | |
dc.identifier.citedreference | Chen, N. J., Mirtsos, C., Suh, D., Lu, Y. C., Lin, W. J., McKerlie, C., Lee, T., Baribault, H., Tian, H., and Yeh, W. C. ( 2007 ) C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203 – 207 | |
dc.identifier.citedreference | Li, R., Coulthard, L. G., Wu, M. C., Taylor, S. M., and Woodruff, T. M. ( 2013 ) C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J. 27, 855 – 864 | |
dc.identifier.citedreference | Rittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huber‐Lang, M., Mackay, C. R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Kohl, J., Gerard, C., Sarma, J. V., and Ward, P. A. ( 2008 ) Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551 – 557 | |
dc.identifier.citedreference | Zhang, X., Schmudde, I., Laumonnier, Y., Pandey, M. K., Clark, J. R., Konig, P., Gerard, N. P., Gerard, C., Wills‐Karp, M., and Kohl, J. ( 2010 ) A critical role for C5L2 in the pathogenesis of experimental allergic asthma. J. Immunol. 185, 6741 – 6752 | |
dc.identifier.citedreference | Kohl, J., Baelder, R., Lewkowich, I. P., Pandey, M. K., Hawlisch, H., Wang, L., Best, J., Herman, N. S., Sproles, A. A., Zwirner, J., Whitsett, J. A., Gerard, C., Sfyroera, G., Lambris, J. D., and Wills‐Karp, M. ( 2006 ) A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J. Clin. Invest. 116, 783 – 796 | |
dc.identifier.citedreference | Bosmann, M., Sarma, J. V., Atefi, G., Zetoune, F. S., and Ward, P. A. ( 2012 ) Evidence for anti‐inflammatory effects of C5a on the innate IL‐17A/IL‐23 axis. FASEB J. 26, 1640 – 1651 | |
dc.identifier.citedreference | Hawlisch, H., Belkaid, Y., Baelder, R., Hildeman, D., Gerard, C., and Kohl, J. ( 2005 ) C5a negatively regulates toll‐like receptor 4‐induced immune responses. Immunity 22, 415 – 426 | |
dc.identifier.citedreference | Bosmann, M., Haggadone, M. D., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2013 ) The interaction between C5a and both C5aR and C5L2 receptors is required for production of G‐CSF during acute inflammation. Eur. J. Immunol. 43, 1907 – 1913 | |
dc.identifier.citedreference | Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., and Zychlinsky, A. ( 2004 ) Neutrophil extracellular traps kill bacteria. Science 303, 1532 – 1535 | |
dc.identifier.citedreference | Brinkmann, V., and Zychlinsky, A. ( 2007 ) Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol. 5, 577 – 582 | |
dc.identifier.citedreference | Hakkim, A., Fuchs, T. A., Martinez, N. E., Hess, S., Prinz, H., Zychlinsky, A., and Waldmann, H. ( 2011 ) Activation of the Raf‐MEK‐ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 7, 75 – 77 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.