Show simple item record

Extracellular histones are essential effectors of C5aR‐ and C5L2‐mediated tissue damage and inflammation in acute lung injury

dc.contributor.authorBosmann, Markus
dc.contributor.authorGrailer, Jamison J.
dc.contributor.authorRuemmler, Robert
dc.contributor.authorRusskamp, Norman F.
dc.contributor.authorZetoune, Firas S.
dc.contributor.authorSarma, J. Vidya
dc.contributor.authorStandiford, Theodore J.
dc.contributor.authorWard, Peter A.
dc.date.accessioned2020-03-17T18:29:08Z
dc.date.available2020-03-17T18:29:08Z
dc.date.issued2013-11
dc.identifier.citationBosmann, Markus; Grailer, Jamison J.; Ruemmler, Robert; Russkamp, Norman F.; Zetoune, Firas S.; Sarma, J. Vidya; Standiford, Theodore J.; Ward, Peter A. (2013). "Extracellular histones are essential effectors of C5aR‐ and C5L2‐mediated tissue damage and inflammation in acute lung injury." The FASEB Journal 27(12): 5010-5021.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154331
dc.publisherWiley Periodicals, Inc.
dc.publisherFederation of American Societies for Experimental Biology
dc.subject.othercomplement
dc.subject.othercytotoxic factors
dc.titleExtracellular histones are essential effectors of C5aR‐ and C5L2‐mediated tissue damage and inflammation in acute lung injury
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154331/1/fsb2027012034.pdf
dc.identifier.doi10.1096/fj.13-236380
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceGerard, N. P., Lu, B., Liu, P., Craig, S., Fujiwara, Y., Okinaga, S., and Gerard, C. ( 2005 ) An anti‐inflammatory function for the complement anaphylatoxin C5a‐binding protein, C5L2. J. Biol. Chem. 280, 39677 – 39680
dc.identifier.citedreferenceLi, P., Li, M., Lindberg, M. R., Kennett, M. J., Xiong, N., and Wang, Y. ( 2010 ) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853 – 1862
dc.identifier.citedreferenceFuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., Weinrauch, Y., Brinkmann, V., and Zychlinsky, A. ( 2007 ) Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231 – 241
dc.identifier.citedreferenceClark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., Patel, K. D., Chakrabarti, S., McAvoy, E., Sinclair, G. D., Keys, E. M., Allen‐Vercoe, E., Devinney, R., Doig, C. J., Green, F. H., and Kubes, P. ( 2007 ) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463 – 469
dc.identifier.citedreferenceFuchs, T. A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D. D., Jr., Wrobleski, S. K., Wakefield, T. W., Hartwig, J. H., and Wagner, D. D. ( 2010 ) Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. U. S. A. 107, 15880 – 15885
dc.identifier.citedreferenceBernard, G. R., Artigas, A., Brigham, K. L., Carlet, J., Falke, K., Hudson, L., Lamy, M., Legall, J. R., Morris, A., and Spragg, R. ( 1994 ) The American‐European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Resp. Crit. Care Med. 149, 818 – 824
dc.identifier.citedreferencePaine, R., 3rd, Standiford, T. J., Dechert, R. E., Moss, M., Martin, G. S., Rosenberg, A. L., Thannickal, V. J., Burnham, E. L., Brown, M. B., and Hyzy, R. C. ( 2012 ) A randomized trial of recombinant human granulocyte‐macrophage colony stimulating factor for patients with acute lung injury. Crit. Care Med. 40, 90 – 97
dc.identifier.citedreferenceBosmann, M., Grailer, J. J., Zhu, K., Matthay, M. A., Sarma, J. V., Zetoune, F. S., and Ward, P. A. ( 2012 ) Anti‐inflammatory effects of beta2 adrenergic receptor agonists in experimental acute lung injury. FASEB J.
dc.identifier.citedreferenceMonestier, M., Fasy, T. M., Losman, M. J., Novick, K. E., and Muller, S. ( 1993 ) Structure and binding properties of monoclonal antibodies to core histones from autoimmune mice. Mol. Immunol. 30, 1069 – 1075
dc.identifier.citedreferenceXu, J., Zhang, X., Pelayo, R., Monestier, M., Ammollo, C. T., Semeraro, F., Taylor, F. B., Esmon, N. L., Lupu, F., and Esmon, C. T. ( 2009 ) Extracellular histones are major mediators of death in sepsis. Nat. Med. 15, 1318 – 1321
dc.identifier.citedreferenceLarsen, G. L., McCarthy, K., Webster, R. O., Henson, J., and Henson, P. M. ( 1980 ) A differential effect of C5a and C5a des Arg in the induction of pulmonary inflammation. Am. J. Pathol. 100, 179 – 192
dc.identifier.citedreferenceKarsten, C. M., Pandey, M. K., Figge, J., Kilchenstein, R., Taylor, P. R., Rosas, M., McDonald, J. U., Orr, S. J., Berger, M., Petzold, D., Blanchard, V., Winkler, A., Hess, C., Reid, D. M., Majoul, I. V., Strait, R. T., Harris, N. L., Kohl, G., Wex, E., Ludwig, R., Zillikens, D., Nimmerjahn, F., Finkelman, F. D., Brown, G. D., Ehlers, M., and Kohl, J. ( 2012 ) Anti‐inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin‐1. Nat. Med. 18, 1401 – 1406
dc.identifier.citedreferenceBamberg, C. E., Mackay, C. R., Lee, H., Zahra, D., Jackson, J., Lim, Y. S., Whitfeld, P. L., Craig, S., Corsini, E., Lu, B., Gerard, C., and Gerard, N. P. ( 2010 ) The C5a receptor (C5aR) C5L2 is a modulator of C5aR‐mediated signal transduction. J. Biol. Chem. 285, 7633 – 7644
dc.identifier.citedreferenceGarcia, C. C., Weston‐Davies, W., Russo, R. C., Tavares, L. P., Rachid, M. A., Alves‐Filho, J. C., Machado, A. V., Ryffel, B., Nunn, M. A., and Teixeira, M. M. ( 2013 ) Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. PloS One 8, e64443
dc.identifier.citedreferenceKanse, S. M., Gallenmueller, A., Zeerleder, S., Stephan, F., Rannou, O., Denk, S., Etscheid, M., Lochnit, G., Krueger, M., and Huber‐Lang, M. ( 2012 ) Factor VII‐activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a. J. Immunol. 188, 2858 – 2865
dc.identifier.citedreferenceBosch, X., Poch, E., and Grau, J. M. ( 2009 ) Rhabdomyolysis and acute kidney injury. N. Engl. J. Med. 361, 62 – 72
dc.identifier.citedreferenceZhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. ( 2010 ) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104 – 107
dc.identifier.citedreferenceAbrams, S. T., Zhang, N., Manson, J., Liu, T., Dart, C., Baluwa, F., Wang, S. S., Brohi, K., Kipar, A., Yu, W., Wang, G., and Toh, C. H. ( 2013 ) Circulating histones are mediators of trauma‐associated lung injury. Am. J. Respir. Crit. Care Med. 187, 160 – 169
dc.identifier.citedreferenceHirsch, J. G. ( 1958 ) Bactericidal action of histone. J. Exp. Med. 108, 925 – 944
dc.identifier.citedreferenceLee, D. Y., Huang, C. M., Nakatsuji, T., Thiboutot, D., Kang, S. A., Monestier, M., and Gallo, R. L. ( 2009 ) Histone H4 is a major component of the antimicrobial action of human sebocytes. J. Invest. Dermatol. 129, 2489 – 2496
dc.identifier.citedreferenceAllam, R., Scherbaum, C. R., Darisipudi, M. N., Mulay, S. R., Hagele, H., Lichtnekert, J., Hagemann, J. H., Rupanagudi, K. V., Ryu, M., Schwarzenberger, C., Hohenstein, B., Hugo, C., Uhl, B., Reichel, C. A., Krombach, F., Monestier, M., Liapis, H., Moreth, K., Schaefer, L., and Anders, H. J. ( 2012 ) Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J. Am. Soc. Nephrol. 23, 1375 – 1388
dc.identifier.citedreferenceFriggeri, A., Banerjee, S., Xie, N., Cui, H., De Freitas, A., Zerfaoui, M., Dupont, H., Abraham, E., and Liu, G. ( 2012 ) Extracellular histones inhibit efferocytosis. Mol. Med. 18, 825 – 833
dc.identifier.citedreferenceCaudrillier, A., Kessenbrock, K., Gilliss, B. M., Nguyen, J. X., Marques, M. B., Monestier, M., Toy, P., Werb, Z., and Looney, M. R. ( 2012 ) Platelets induce neutrophil extracellular traps in transfusion‐related acute lung injury. J. Clin. Invest. 122, 2661 – 2671
dc.identifier.citedreferenceSaffarzadeh, M., Juenemann, C., Queisser, M. A., Lochnit, G., Barreto, G., Galuska, S. P., Lohmeyer, J., and Preissner, K. T. ( 2012 ) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PloS One 7, e32366
dc.identifier.citedreferenceXu, J., Zhang, X., Monestier, M., Esmon, N. L., and Esmon, C. T. ( 2011 ) Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol. 187, 2626 – 2631
dc.identifier.citedreferenceGoss, C. H., Brower, R. G., Hudson, L. D., and Rubenfeld, G. D. ( 2003 ) Incidence of acute lung injury in the United States. Crit. Care Med. 31, 1607 – 1611
dc.identifier.citedreferenceRubenfeld, G. D., Caldwell, E., Peabody, E., Weaver, J., Martin, D. P., Neff, M., Stern, E. J., and Hudson, L. D. ( 2005 ) Incidence and outcomes of acute lung injury. N Engl. J. Med. 353, 1685 – 1693
dc.identifier.citedreferenceErickson, S. E., Martin, G. S., Davis, J. L., Matthay, M. A., and Eisner, M. D. ( 2009 ) Recent trends in acute lung injury mortality: 1996–2005. Crit. Care Med. 37, 1574 – 1579
dc.identifier.citedreferenceMatthay, M. A., Ware, L. B., and Zimmerman, G. A. ( 2012 ) The acute respiratory distress syndrome. J. Clin. Invest. 122, 2731 – 2740
dc.identifier.citedreferenceMatthay, M. A., and Zemans, R. L. ( 2011 ) The acute respiratory distress syndrome: pathogenesis and treatment. Ann. Rev. Pathol. 6, 147 – 163
dc.identifier.citedreferenceHuber‐Lang, M., Sarma, J. V., Zetoune, F. S., Rittirsch, D., Neff, T. A., McGuire, S. R., Lambris, J. D., Warner, R. L., Flierl, M. A., Hoesel, L. M., Gebhard, F., Younger, J. G., Drouin, S. M., Wetsel, R. A., and Ward, P. A. ( 2006 ) Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12, 682 – 687
dc.identifier.citedreferenceBosmann, M., and Ward, P. A. ( 2012 ) Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. Adv. Exp. Med. Biol. 946, 147 – 159
dc.identifier.citedreferenceSun, L., Guo, R. F., Gao, H., Sarma, J. V., Zetoune, F. S., and Ward, P. A. ( 2009 ) Attenuation of IgG immune complex‐induced acute lung injury by silencing C5aR in lung epithelial cells. FASEB J. 23, 3808 – 3818
dc.identifier.citedreferenceMartin, T. R., and Matute‐Bello, G. ( 2011 ) Experimental models and emerging hypotheses for acute lung injury. Crit. Care Clin. 27, 735 – 752
dc.identifier.citedreferenceWard, P. A. ( 2003 ) Acute lung injury: how the lung inflammatory response works. Eur. Respir. J. Suppl. 44, 22s – 23s
dc.identifier.citedreferenceMartin, T. R., Hagimoto, N., Nakamura, M., and Matute‐Bello, G. ( 2005 ) Apoptosis and epithelial injury in the lungs. Proc. Am. Thorac. Soc. 2, 214 – 220
dc.identifier.citedreferenceGao, H., Neff, T., and Ward, P. A. ( 2006 ) Regulation of lung inflammation in the model of IgG immune‐complex injury. Ann. Rev. Pathol. 1, 215 – 242
dc.identifier.citedreferenceWarren, J. S., Yabroff, K. R., Remick, D. G., Kunkel, S. L., Chensue, S. W., Kunkel, R. G., Johnson, K. J., and Ward, P. A. ( 1989 ) Tumor necrosis factor participates in the pathogenesis of acute immune complex alveolitis in the rat. J. Clin. Invest. 84, 1873 – 1882
dc.identifier.citedreferenceRicklin, D., Hajishengallis, G., Yang, K., and Lambris, J. D. ( 2010 ) Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785 – 797
dc.identifier.citedreferenceGuo, R. F., and Ward, P. A. ( 2005 ) Role of C5a in inflammatory responses. Ann. Rev. Immunol. 23, 821 – 852
dc.identifier.citedreferenceSarma, J. V., and Ward, P. A. ( 2011 ) The complement system. Cell Tissue Res. 343, 227 – 235
dc.identifier.citedreferenceWebster, R. O., Larsen, G. L., and Henson, P. M. ( 1982 ) In vivo clearance and tissue distribution of C5a and C5a des arginine complement fragments in rabbits. J. Clin. Invest. 70, 1177 – 1183
dc.identifier.citedreferenceGerard, C., and Gerard, N. P. ( 1994 ) C5A anaphylatoxin and its seven transmembrane‐segment receptor. Ann. Rev. Immunol. 12, 775 – 808
dc.identifier.citedreferenceGerard, N. P., and Gerard, C. ( 1991 ) The chemotactic receptor for human C5a anaphylatoxin. Nature 349, 614 – 617
dc.identifier.citedreferenceBosmann, M., Haggadone, M. D., Hemmila, M. R., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2012 ) Complement activation product C5a is a selective suppressor of TLR4‐induced, but not TLR3‐induced, production of IL‐27(p28) from macrophages. J. Immunol. 188, 5086 – 5093
dc.identifier.citedreferenceGotts, J. E., and Matthay, M. A. ( 2011 ) Mesenchymal stem cells and acute lung injury. Crit. Care Clin. 27, 719 – 733
dc.identifier.citedreferenceLalli, P. N., Strainic, M. G., Yang, M., Lin, F., Medof, M. E., and Heeger, P. S. ( 2008 ) Locally produced C5a binds to T cell‐expressed C5aR to enhance effector T‐cell expansion by limiting antigen‐induced apoptosis. Blood 112, 1759 – 1766
dc.identifier.citedreferenceStrainic, M. G., Liu, J., Huang, D., An, F., Lalli, P. N., Muqim, N., Shapiro, V. S., Dubyak, G. R., Heeger, P. S., and Medof, M. E. ( 2008 ) Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425 – 435
dc.identifier.citedreferenceRiedemann, N. C., Guo, R. F., Sarma, V. J., Laudes, I. J., Huber‐Lang, M., Warner, R. L., Albrecht, E. A., Speyer, C. L., and Ward, P. A. ( 2002 ) Expression and function of the C5a receptor in rat alveolar epithelial cells. J. Immunol. 168, 1919 – 1925
dc.identifier.citedreferenceWetsel, R. A. ( 1995 ) Expression of the complement C5a anaphylatoxin receptor (C5aR) on non‐myeloid cells. Immunol. Lett. 44, 183 – 187
dc.identifier.citedreferenceDrouin, S. M., Kildsgaard, J., Haviland, J., Zabner, J., Jia, H. P., McCray, P. B. Jr., Tack, B. F., and Wetsel, R. A. ( 2001 ) Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J. Immunol. 166, 2025 – 2032
dc.identifier.citedreferenceKwan, W. H., van der Touw, W., Paz‐Artal, E., Li, M. O., and Heeger, P. S. ( 2013 ) Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J. Exp. Med. 210, 257 – 268
dc.identifier.citedreferenceDunkelberger, J., Zhou, L., Miwa, T., and Song, W. C. ( 2012 ) C5aR expression in a novel GFP reporter gene knockin mouse: implications for the mechanism of action of C5aR signaling in T cell immunity. J. Immunol. 188, 4032 – 4042
dc.identifier.citedreferenceCain, S. A., and Monk, P. N. ( 2002 ) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des‐Arg(74). J. Biol. Chem. 277, 7165 – 7169
dc.identifier.citedreferenceOkinaga, S., Slattery, D., Humbles, A., Zsengeller, Z., Morteau, O., Kinrade, M. B., Brodbeck, R. M., Krause, J. E., Choe, H. R., Gerard, N. P., and Gerard, C. ( 2003 ) C5L2, a nonsignaling C5A binding protein. Biochemistry 42, 9406 – 9415
dc.identifier.citedreferenceChen, N. J., Mirtsos, C., Suh, D., Lu, Y. C., Lin, W. J., McKerlie, C., Lee, T., Baribault, H., Tian, H., and Yeh, W. C. ( 2007 ) C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203 – 207
dc.identifier.citedreferenceLi, R., Coulthard, L. G., Wu, M. C., Taylor, S. M., and Woodruff, T. M. ( 2013 ) C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J. 27, 855 – 864
dc.identifier.citedreferenceRittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huber‐Lang, M., Mackay, C. R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Kohl, J., Gerard, C., Sarma, J. V., and Ward, P. A. ( 2008 ) Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551 – 557
dc.identifier.citedreferenceZhang, X., Schmudde, I., Laumonnier, Y., Pandey, M. K., Clark, J. R., Konig, P., Gerard, N. P., Gerard, C., Wills‐Karp, M., and Kohl, J. ( 2010 ) A critical role for C5L2 in the pathogenesis of experimental allergic asthma. J. Immunol. 185, 6741 – 6752
dc.identifier.citedreferenceKohl, J., Baelder, R., Lewkowich, I. P., Pandey, M. K., Hawlisch, H., Wang, L., Best, J., Herman, N. S., Sproles, A. A., Zwirner, J., Whitsett, J. A., Gerard, C., Sfyroera, G., Lambris, J. D., and Wills‐Karp, M. ( 2006 ) A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J. Clin. Invest. 116, 783 – 796
dc.identifier.citedreferenceBosmann, M., Sarma, J. V., Atefi, G., Zetoune, F. S., and Ward, P. A. ( 2012 ) Evidence for anti‐inflammatory effects of C5a on the innate IL‐17A/IL‐23 axis. FASEB J. 26, 1640 – 1651
dc.identifier.citedreferenceHawlisch, H., Belkaid, Y., Baelder, R., Hildeman, D., Gerard, C., and Kohl, J. ( 2005 ) C5a negatively regulates toll‐like receptor 4‐induced immune responses. Immunity 22, 415 – 426
dc.identifier.citedreferenceBosmann, M., Haggadone, M. D., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2013 ) The interaction between C5a and both C5aR and C5L2 receptors is required for production of G‐CSF during acute inflammation. Eur. J. Immunol. 43, 1907 – 1913
dc.identifier.citedreferenceBrinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., and Zychlinsky, A. ( 2004 ) Neutrophil extracellular traps kill bacteria. Science 303, 1532 – 1535
dc.identifier.citedreferenceBrinkmann, V., and Zychlinsky, A. ( 2007 ) Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol. 5, 577 – 582
dc.identifier.citedreferenceHakkim, A., Fuchs, T. A., Martinez, N. E., Hess, S., Prinz, H., Zychlinsky, A., and Waldmann, H. ( 2011 ) Activation of the Raf‐MEK‐ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 7, 75 – 77
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.