Show simple item record

Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation

dc.contributor.authorArmstrong, Aimee K.
dc.contributor.authorZampi, Jeffrey D.
dc.contributor.authorItu, Lucian M.
dc.contributor.authorBenson, Lee N.
dc.date.accessioned2020-03-17T18:29:13Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-03-17T18:29:13Z
dc.date.issued2020-02
dc.identifier.citationArmstrong, Aimee K.; Zampi, Jeffrey D.; Itu, Lucian M.; Benson, Lee N. (2020). "Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation." Catheterization and Cardiovascular Interventions 95(2): 294-299.
dc.identifier.issn1522-1946
dc.identifier.issn1522-726X
dc.identifier.urihttps://hdl.handle.net/2027.42/154333
dc.description.abstractComputational fluid dynamics (CFD) can be used to analyze blood flow and to predict hemodynamic outcomes after interventions for coarctation of the aorta and other cardiovascular diseases. We report the first use of cardiac 3‐dimensional rotational angiography for CFD and show not only feasibility but also validation of its hemodynamic computations with catheter‐based measurements in three patients.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherpediatrics
dc.subject.othercoarctation
dc.subject.othercongenital heart disease
dc.titleUse of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154333/1/ccd28507.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154333/2/ccd28507_am.pdf
dc.identifier.doi10.1002/ccd.28507
dc.identifier.sourceCatheterization and Cardiovascular Interventions
dc.identifier.citedreferenceBouchart F, Dubar A, Tabley A, et al. Coarctation of the aorta in adults: surgical results and long‐term follow‐up. Ann Thorac Surg. 2000; 79: 1483 ‐ 1488.
dc.identifier.citedreferenceMeadows J, Minahan M, McElhinney DB, McEnaney K, Ringel R, on behalf of the COAST Investigators. Intermediate outcomes in the prospective, multicenter Coarctation of the Aorta Stent Trial (COAST). Circulation. 2015; 131: 1656 ‐ 1664. https://doi.org/10.1161/CIRCULATIONAHA.114.013937.
dc.identifier.citedreferenceQuennelle S, Powell A, Geva T, Prakash A. Persistent aortic arch hypoplasia after coarctation treatment is associated with late systemic hypertension. J Am Heart Assoc. 2015; 4: 1 ‐ 8. https://doi.org/10.1161/JAHA.115.001978.
dc.identifier.citedreferenceBaumgartner H, Bonhoeffer P, De Groot N, et al. ESC Guidelines for the management of grown‐up congenital heart disease (new version 2010). Eur Heart J. 2010; 31: 2915 ‐ 2957. https://doi.org/10.1093/eurheartj/ehq249.
dc.identifier.citedreferenceFeltes T, Bacha E, Beekman R, et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation. 2011; 123: 2607 ‐ 2652. https://doi.org/10.1161/CIR.0b013e31821b1f10.
dc.identifier.citedreferenceKwon S, Feinstein JA, Dholaki RJ, LaDisa JF. Quantification of local hemodynamic alterations caused by virtual implantation of three commercially‐available stents for the treatment of aortic coarctation. Pediatr Cardiol. 2014; 35: 732 ‐ 740. https://doi.org/10.1007/s00246-013-0845-7.
dc.identifier.citedreferenceCapelli C, Sauvage E, Giusti G, et al. Patient‐specific simulations for planning treatment in congenital heart disease. Interface Focus. 2018; 8: 20170021. https://doi.org/10.1098/rsfs.2017.0021.
dc.identifier.citedreferenceRen Y, Chen G, Liu Z, Cai Y, Lu G, Li Z. Reproducibility of image‐based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography. Biomed Eng Online. 2016; 15: 50 ‐ 64. https://doi.org/10.1186/s12938-016-0163-4.
dc.identifier.citedreferenceItu L, Sharma P, Ralovich K, et al. Non‐invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements. Ann Biomed Eng. 2013; 41: 669 ‐ 681. https://doi.org/10.1007/s10439-012-0715-0.
dc.identifier.citedreferenceGoubergrits L, Riesenkampff E, Yevtushenko P, et al. MRI‐based CFD for diagnosis and treatment prediction: clinical validation study in patients with coarctation of the aorta. J Magn Reson Imaging. 2015; 41: 909 ‐ 916. https://doi.org/10.1002/jmri.24639.
dc.identifier.citedreferenceRalovich K, Itu L, Vitanovski D, et al. Noninvasive hemodynamic assessment, treatment outcome prediction and follow‐up of aortic coarctation from MR imaging. Med Phys. 2015; 42: 2143 ‐ 2156. https://doi.org/10.1118/1.4914856.
dc.identifier.citedreferenceKoo B, Erglis A, Doh J, et al. Diagnosis of ischemia‐causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms results from the prospective multicenter DISCOVER‐FLOW (diagnosis of ischemia‐causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol. 2011; 58: 1989 ‐ 1997. https://doi.org/10.1016/j.jacc.2011.06.066.
dc.identifier.citedreferenceMorris PD, Narracott A, von Tengg‐Kobligk H, et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart. 2016; 102: 18 ‐ 28. https://doi.org/10.1136/heartjnl-2015-308044.
dc.identifier.citedreferencePennati G, Corsini C, Hsia T‐Y, Migliavacca F, for the Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Computational fluid dynamics models and congenital heart diseases. Front Pediatr. 2013; 1: 1 ‐ 7. https://doi.org/10.3389/fped.2013.00004.
dc.identifier.citedreferenceLee BK. Computational fluid dynamics in cardiovascular disease. Kor Circ J. 2011; 41: 423 ‐ 430. https://doi.org/10.4070/kcj.2011.41.8.423.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.