Show simple item record

MyD88‐dependent production of IL‐17F is modulated by the anaphylatoxin C5a via the Akt signaling pathway

dc.contributor.authorBosmann, Markus
dc.contributor.authorPatel, Vinay R.
dc.contributor.authorRusskamp, Norman F.
dc.contributor.authorPache, Florence
dc.contributor.authorZetoune, Firas S.
dc.contributor.authorSarma, J. Vidya
dc.contributor.authorWard, Peter A.
dc.date.accessioned2020-03-17T18:29:16Z
dc.date.available2020-03-17T18:29:16Z
dc.date.issued2011-12
dc.identifier.citationBosmann, Markus; Patel, Vinay R.; Russkamp, Norman F.; Pache, Florence; Zetoune, Firas S.; Sarma, J. Vidya; Ward, Peter A. (2011). "MyD88‐dependent production of IL‐17F is modulated by the anaphylatoxin C5a via the Akt signaling pathway." The FASEB Journal 25(12): 4222-4232.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154335
dc.description.abstractThe interleukin‐17 (IL‐17) family of cytokines plays important roles in innate immune defenses against bacterial and fungal pathogens. While much is known about IL‐17A, much less information is available about the IL‐17F isoform. Here, we investigated gene expression and release of IL‐17F and its regulation by the complement system. IL‐17F was produced in mouse peritoneal elicited macrophages after TLR4 activation by LPS, peaking after 12 h. This effect was completely dependent on the presence of the adaptor protein MyD88. The copresence of the complement activation product, C5a (EC50=10 nM), amplified IL‐17F production via the receptor C5aR. In vitro signaling studies indicated that LPS or C5a, or the combination, caused phosphorylation of Akt occurring at threonine 308 but not at serine 473. Treatment of macrophages with pharmacologic inhibitors of PI3K‐Akt greatly reduced production of IL‐17F as well as mRNA for IL‐17F. In endotoxemia, C5a levels peaked at 6 h, while IL‐17F levels peaked between 6‐12 h. Full in vivo production of IL‐17F during endotoxemia required C5a. A similar result was found in the cecal ligation and puncture sepsis model. These data suggest that maximal production of IL‐17F requires complement activation and presence of C5a.—Bosmann, M., Patel, V. R., Russkamp, N. F., Pache, F., Zetoune, F. S., Sarma, J. V., Ward, P. A. MyD88‐dependent production of IL‐17F is modulated by the anaphylatoxin C5a via the Akt signaling pathway. FASEB J. 25, 4222–4232 (2011). www.fasebj.org
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpolymicrobial sepsis
dc.subject.othermacrophages
dc.subject.otherKey Words
dc.subject.otherendotoxemia
dc.subject.otherendotoxic shock
dc.subject.othercecal ligation and puncture
dc.titleMyD88‐dependent production of IL‐17F is modulated by the anaphylatoxin C5a via the Akt signaling pathway
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154335/1/fsb2fj11191205.pdf
dc.identifier.doi10.1096/fj.11-191205
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceFerretti, S., Bonneau, O., Dubois, G. R., Jones, C. E., and Trifilieff, A. ( 2003 ) IL‐17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide‐induced airway neutrophilia: IL‐15 as a possible trigger. J. Immunol. 170, 2106 – 2112
dc.identifier.citedreferenceGerard, C., and Gerard, N. P. ( 1994 ) C5A anaphylatoxin and its seven transmembrane‐segment receptor. Ann. Rev. Immunol. 12, 775 – 808
dc.identifier.citedreferenceGerard, N. P., and Gerard, C. ( 1991 ) The chemotactic receptor for human C5a anaphylatoxin. Nature 349, 614 – 617
dc.identifier.citedreferenceRittirsch, D., Huber‐Lang, M. S., Flierl, M. A., and Ward, P. A. ( 2009 ) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31 – 36
dc.identifier.citedreferenceBosmann, M., Russkamp, N. F., Patel, V. R., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2011 ) The outcome of polymicrobial sepsis is independent of T and B cells [E‐pub ahead of print.] Shock PMID: 21701414
dc.identifier.citedreferencePatel, S. N., Berghout, J., Lovegrove, F. E., Ayi, K., Conroy, A., Serghides, L., Min‐oo, G., Gowda, D. C., Sarma, J. V., Rittirsch, D., Ward, P. A., Liles, W. C., Gros, P., and Kain, K. C. ( 2008 ) C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J. Exp. Med. 205, 1133 – 1143
dc.identifier.citedreferenceRiedemann, N. C., Guo, R. F., Neff, T. A., Laudes, I. J., Keller, K. A., Sarma, V. J., Markiewski, M. M., Mastellos, D., Strey, C. W., Pierson, C. L., Lambris, J. D., Zetoune, F. S., and Ward, P. A. ( 2002 ) Increased C5a receptor expression in sepsis. J. Clin. Invest. 110, 101 – 108
dc.identifier.citedreferenceKawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S. ( 1999 ) Unresponsiveness of MyD88‐deficient mice to endotoxin. Immunity 11, 115 – 122
dc.identifier.citedreferenceLiu, J., Guan, X., and Ma, X. ( 2007 ) Regulation of IL‐27 p28 gene expression in macrophages through MyD88‐ and interferon‐gamma‐mediated pathways. J. Exp. Med. 204, 141 – 152
dc.identifier.citedreferenceGuo, R. F., Sun, L., Gao, H., Shi, K. X., Rittirsch, D., Sarma, V. J., Zetoune, F. S., and Ward, P. A. ( 2006 ) In vivo regulation of neutrophil apoptosis by C5a during sepsis. J. Leukoc. Biol. 80, 1575 – 1583
dc.identifier.citedreferenceRiedemann, N. C., Guo, R. F., Bernacki, K. D., Reuben, J. S., Laudes, I. J., Neff, T. A., Gao, H., Speyer, C., Sarma, V. J., Zetoune, F. S., and Ward, P. A. ( 2003 ) Regulation by C5a of neutrophil activation during sepsis. Immunity 19, 193 – 202
dc.identifier.citedreferenceLi, L., Huang, L., Vergis, A. L., Ye, H., Bajwa, A., Narayan, V., Strieter, R. M., Rosin, D. L., and Okusa, M. D. ( 2010 ) IL‐17 produced by neutrophils regulates IFN‐gamma‐mediated neutrophil migration in mouse kidney ischemia‐reperfusion injury. J. Clin. Invest. 120, 331 – 342
dc.identifier.citedreferenceMichel, M.‐L., Mendes‐da‐Cruz, D., Keller, A. C., Lochner, M., Schneider, E., Dy, M., Eberl, G., and Leite‐de‐Moraes, M. C. ( 2008 ) Critical role of ROR‐gammat in a new thymic pathway leading to IL‐17‐producing invariant NKT cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 105, 19845 – 19850
dc.identifier.citedreferenceSutton, C. E., Lalor, S. J., Sweeney, C. M., Brereton, C. F., Lavelle, E. C., and Mills, K. H. G. ( 2009 ) Interleukin‐1 and IL‐23 induce innate IL‐17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331 – 341
dc.identifier.citedreferenceOhno, M., Hirata, T., Enomoto, M., Araki, T., Ishimaru, H., and Takahashi, T. A. ( 2000 ) A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol. Immunol. 37, 407 – 412
dc.identifier.citedreferenceGu, Y., Yang, J., Ouyang, X., Liu, W., Li, H., Bromberg, J., Chen, S. H., Mayer, L., Unkeless, J. C., and Xiong, H. ( 2008 ) Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells. Eur. J. Immunol. 38, 1807 – 1813
dc.identifier.citedreferencePhipps, S., Lam, C. E., Kaiko, G. E., Foo, S. Y., Collison, A., Mattes, J., Barry, J., Davidson, S., Oreo, K., Smith, L., Mansell, A., Matthaei, K. I., and Foster, P. S. ( 2009 ) Toll/IL‐1 signaling is critical for house dust mite‐specific helper T cell type 2 and type 17 [corrected] responses. Am. J. Respir. Crit. Care. Med. 179, 883 – 893
dc.identifier.citedreferenceDa Silva, C. A., Hartl, D., Liu, W., Lee, C. G., and Elias, J. A. ( 2008 ) TLR‐2 and IL‐17A in chitin‐induced macrophage activation and acute inflammation. J. Immunol. 181, 4279 – 4286
dc.identifier.citedreferenceSeki, E., Tsutsui, H., Nakano, H., Tsuji, N., Hoshino, K., Adachi, O., Adachi, K., Futatsugi, S., Kuida, K., Takeuchi, O., Okamura, H., Fujimoto, J., Akira, S., and Nakanishi, K. ( 2001 ) Lipopolysaccharide‐induced IL‐18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL‐12 and IL‐1beta. J. Immunol. 166, 2651 – 2657
dc.identifier.citedreferenceStrieter, R. M., Kasahara, K., Allen, R. M., Standiford, T. J., Rolfe, M. W., Becker, F. S., Chensue, S. W., and Kunkel, S. L. ( 1992 ) Cytokine‐induced neutrophil‐derived interleukin‐8. Am. J. Pathol. 141, 397 – 407
dc.identifier.citedreferenceRiedemann, N. C., Guo, R. F., Hollmann, T. J., Gao, H., Neff, T. A., Reuben, J. S., Speyer, C. L., Sarma, J. V., Wetsel, R. A., Zetoune, F. S., and Ward, P. A. ( 2004 ) Regulatory role of C5a in LPS‐induced IL‐6 production by neutrophils during sepsis. FASEB J. 18, 370 – 372
dc.identifier.citedreferenceHawlisch, H., Belkaid, Y., Baelder, R., Hildeman, D., Gerard, C., and Kohl, J. ( 2005 ) C5a negatively regulates toll‐like receptor 4‐induced immune responses. Immunity 22, 415 – 426
dc.identifier.citedreferenceWittmann, M., Zwirner, J., Larsson, V. A., Kirchhoff, K., Begemann, G., Kapp, A., Gotze, O., and Werfel, T. ( 1999 ) C5a suppresses the production of IL‐12 by IFN‐gamma‐primed and lipopolysaccharide‐challenged human monocytes. J. Immunol. 162, 6763 – 6769
dc.identifier.citedreferenceNataf, S., Davoust, N., Ames, R. S., and Barnum, S. R. ( 1999 ) Human T cells express the C5a receptor and are chemoat‐tracted to C5a. J. Immunol. 162, 4018 – 4023
dc.identifier.citedreferenceLalli, P. N., Strainic, M. G., Yang, M., Lin, F., Medof, M. E., and Heeger, P. S. ( 2008 ) Locally produced C5a binds to T cell‐expressed C5aR to enhance effector T‐cell expansion by limiting antigen‐induced apoptosis. Blood 112, 1759 – 1766
dc.identifier.citedreferenceStrainic, M. G., Liu, J., Huang, D., An, F., Lalli, P. N., Muqim, N., Shapiro, V. S., Dubyak, G. R., Heeger, P. S., and Medof, M. E. ( 2008 ) Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425 – 435
dc.identifier.citedreferenceHashimoto, M., Hirota, K., Yoshitomi, H., Maeda, S., Teradaira, S., Akizuki, S., Prieto‐Martin, P., Nomura, T., Sakaguchi, N., Kohl, J., Heyman, B., Takahashi, M., Fujita, T., Mimori, T., and Sakaguchi, S. ( 2010 ) Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J. Exp. Med. 207, 1135 – 1143
dc.identifier.citedreferenceLajoie, S., Lewkowich, I. P., Suzuki, Y., Clark, J. R., Sproles, A. A., Dienger, K., Budelsky, A. L., and Wills‐Karp, M. ( 2010 ) Complement‐mediated regulation of the IL‐17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat. Immunol. 11, 928 – 935
dc.identifier.citedreferenceReiman, R., Gerard, C., Campbell, I. L., and Barnum, S. R. ( 2002 ) Disruption of the C5a receptor gene fails to protect against experimental allergic encephalomyelitis. Eur. J. Immunol. 32, 1157 – 1163
dc.identifier.citedreferenceWeaver, D. J., Reis, E. S., Pandey, M. K., Kohl, G., Harris, N., Gerard, C., and Kohl, J. ( 2010 ) C5a receptor‐deficient dendritic cells promote induction of Treg and Th17 cells. Eur. J. Immunol. 40, 710 – 721
dc.identifier.citedreferenceNonaka, M., and Yoshizaki, F. ( 2004 ) Evolution of the complement system. Mol. Immunol. 40, 897 – 902
dc.identifier.citedreferenceHajishengallis, G., and Lambris, J. D. Crosstalk pathways between Toll‐like receptors and the complement system. Trends Immunol. 31, 154 – 163
dc.identifier.citedreferenceRicklin, D., Hajishengallis, G., Yang, K., and Lambris, J. D. ( 2010 ) Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785 – 797
dc.identifier.citedreferenceGuo, R. F., and Ward, P. A. ( 2005 ) Role of C5a in inflammatory responses. Ann. Rev. Immunol. 23, 821 – 852
dc.identifier.citedreferenceWebster, R. O., Larsen, G. L., and Henson, P. M. ( 1982 ) In vivo clearance and tissue distribution of C5a and C5a des arginine complement fragments in rabbits. J. Clin. Invest. 70, 1177 – 1183
dc.identifier.citedreferenceWard, P. A. ( 2004 ) The dark side of C5a in sepsis. Nat. Rev. Immunol. 4, 133 – 142
dc.identifier.citedreferenceWard, P. A. ( 2010 ) Role of C5 activation products in sepsis. TSWJ 10, 2395 – 2402
dc.identifier.citedreferenceWard, P. A. ( 2010 ) The harmful role of c5a on innate immunity in sepsis. J. Innate Immun. 2, 439 – 445
dc.identifier.citedreferenceCzermak, B. J., Sarma, V., Pierson, C. L., Warner, R. L., Huber‐Lang, M., Bless, N. M., Schmal, H., Friedl, H. P., and Ward, P. A. ( 1999 ) Protective effects of C5a blockade in sepsis. Nat. Med. 5, 788 – 792
dc.identifier.citedreferenceRittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huber‐Lang, M., Mackay, C. R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Kohl, J., Gerard, C., Sarma, J. V., and Ward, P. A. ( 2008 ) Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551 – 557
dc.identifier.citedreferenceAtefi, G., Zetoune, F. S., Herron, T. J., Jalife, J., Bosmann, M., Al‐Aref, R., Sarma, J. V., and Ward, P. A. ( 2011 ) Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB J. 25, 2500 – 2508
dc.identifier.citedreferenceNiederbichler, A. D., Hoesel, L. M., Westfall, M. V., Gao, H. W., Ipaktchi, K. R., Sun, L., Zetoune, F. S., Su, G. L., Arbabi, S., Sarma, J. V., Wang, S. C., Hemmila, M. R., and Ward, P. A. ( 2006 ) An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J. Exp. Med. 203, 53 – 61
dc.identifier.citedreferenceIwakura, Y., Ishigame, H., Saijo, S., and Nakae, S. ( 2011 ) Functional specialization of interleukin‐17 family members. Immunity 34, 149 – 162
dc.identifier.citedreferenceWeaver, C. T., Hatton, R. D., Mangan, P. R., and Harrington, L. E. ( 2007 ) IL‐17 family cytokines and the expanding diversity of effector T cell lineages. Ann. Rev. Immunol. 25, 821 – 852
dc.identifier.citedreferenceChang, S. H., and Dong, C. ( 2007 ) A novel heterodimeric cytokine consisting of IL‐17 and IL‐17F regulates inflammatory responses. Cell Res. 17, 435 – 440
dc.identifier.citedreferenceGaffen, S. L. ( 2009 ) Structure and signalling in the IL‐17 receptor family. Nat. Rev. Immunol. 9, 556 – 567
dc.identifier.citedreferenceCua, D. J., and Tato, C. M. ( 2010 ) Innate IL‐17‐producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479 – 489
dc.identifier.citedreferenceIshigame, H., Kakuta, S., Nagai, T., Kadoki, M., Nambu, A., Komiyama, Y., Fujikado, N., Tanahashi, Y., Akitsu, A., Kotaki, H., Sudo, K., Nakae, S., Sasakawa, C., and Iwakura, Y. ( 2009 ) Differential roles of interleukin‐17A and ‐17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108 – 119
dc.identifier.citedreferenceHymowitz, S. G., Filvaroff, E. H., Yin, J. P., Lee, J., Cai, L., Risser, P., Maruoka, M., Mao, W., Foster, J., Kelley, R. F., Pan, G., Gurney, A. L., de Vos, A. M., and Starovasnik, M. A. ( 2001 ) IL‐17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL‐17F, and implications for receptor binding. EMBO J. 20, 5332 – 5341
dc.identifier.citedreferenceFujishima, S., Watanabe, H., Kawaguchi, M., Suzuki, T., Matsukura, S., Homma, T., Howell, B. G., Hizawa, N., Mitsuya, T., Huang, S. K., and Iijima, M. ( 2010 ) Involvement of IL‐17F via the induction of IL‐6 in psoriasis. Arch. Dermatol. Res. 302, 499 – 505
dc.identifier.citedreferenceLiang, S. C., Tan, X. Y., Luxenberg, D. P., Karim, R., Dunussi‐Joannopoulos, K., Collins, M., and Fouser, L. A. ( 2006 ) Interleukin (IL)‐22 and IL‐17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271 – 2279
dc.identifier.citedreferenceYe, P., Rodriguez, F. H., Kanaly, S., Stocking, K. L., Schurr, J., Schwarzenberger, P., Oliver, P., Huang, W., Zhang, P., Zhang, J., Shellito, J. E., Bagby, G. J., Nelson, S., Charrier, K., Peschon, J. J., and Kolls, J. K. ( 2001 ) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony‐stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519 – 527
dc.identifier.citedreferencePuel, A., Cypowyj, S., Bustamante, J., Wright, J. F., Liu, L., Lim, H. K., Migaud, M., Israel, L., Chrabieh, M., Audry, M., Gumbleton, M., Toulon, A., Bodemer, C., El‐Baghdadi, J., Whitters, M., Paradis, T., Brooks, J., Collins, M., Wolfman, N. M., Al‐Muhsen, S., Galicchio, M., Abel, L., Picard, C., and Casanova, J. L. ( 2011 ) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin‐17 immunity. Science 332, 65 – 68
dc.identifier.citedreferenceFlierl, M. A., Rittirsch, D., Gao, H., Hoesel, L. M., Nadeau, B. A., Day, D. E., Zetoune, F. S., Sarma, J. V., Huber‐Lang, M. S., Ferrara, J. L., and Ward, P. A. ( 2008 ) Adverse functions of IL‐17A in experimental sepsis. FASEB J. 22, 2198 – 2205
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.