Show simple item record

Measuring the Earth’s Synchrotron Emission From Radiation Belts With a Lunar Near Side Radio Array

dc.contributor.authorHegedus, Alexander
dc.contributor.authorNénon, Quentin
dc.contributor.authorBrunet, Antoine
dc.contributor.authorKasper, Justin
dc.contributor.authorSicard, Angélica
dc.contributor.authorCecconi, Baptiste
dc.contributor.authorMacDowall, Robert
dc.contributor.authorBaker, Daniel
dc.date.accessioned2020-03-17T18:29:24Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-03-17T18:29:24Z
dc.date.issued2020-02
dc.identifier.citationHegedus, Alexander; Nénon, Quentin ; Brunet, Antoine; Kasper, Justin; Sicard, Angélica ; Cecconi, Baptiste; MacDowall, Robert; Baker, Daniel (2020). "Measuring the Earth’s Synchrotron Emission From Radiation Belts With a Lunar Near Side Radio Array." Radio Science 55(2): n/a-n/a.
dc.identifier.issn0048-6604
dc.identifier.issn1944-799X
dc.identifier.urihttps://hdl.handle.net/2027.42/154341
dc.description.abstractThe high kinetic energy electrons that populate the Earth’s radiation belts emit synchrotron emissions because of their interaction with the planetary magnetic field. A lunar near side array would be uniquely positioned to image this emission and provide a near real time measure of how the Earth’s radiation belts are responding to the current solar input. The Salammbô code is a physical model of the dynamics of the three‐dimensional phase‐space electron densities in the radiation belts, allowing the prediction of 1‐keV to 100‐MeV electron distributions trapped in the belts. This information is put into a synchrotron emission simulator that provides the brightness distribution of the emission up to 1 MHz from a given observation point. Using Digital Elevation Models from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter data, we select a set of locations near the Lunar sub‐Earth point with minimum elevation variation over various‐sized patches where we simulate radio receivers to create a synthetic aperture. We consider all realistic noise sources in the low‐frequency regime. We then use a custom Common Astronomy Software Applications code to image and process the data from our defined array, using SPICE to align the lunar coordinates with the Earth. We find that for a moderate lunar surface electron density of 250/cm3, the radiation belts may be detected every 12–24 hr with a 16,384‐element array over a 100‐km‐diameter circle. Changing electron density can make measurements 10 times faster at lunar night and 10 times slower at lunar noon.Plain Language SummaryThe Earth’s ionosphere is home to a large population of energetic electrons that live in the balance of many factors including input from the Solar wind and the influence of the Earth’s magnetic field. These energetic electrons emit radio waves as they traverse Earth’s magnetosphere, leading to short‐lived, strong radio emissions from local regions, as well as persistent weaker emissions that act as a global signature of the population breakdown of all the energetic electrons. Characterizing this weaker emission (synchrotron emission) would lead to a greater understanding of the energetic electron populations on a day‐to‐day level. A radio array on the near side of the Moon would always be facing the Earth and would be well suited for measuring its low‐frequency radio emissions. In this work we simulate such a radio array on the lunar near side, to image this weaker synchrotron emission. The specific geometry and location of the test array were made using the most recent lunar maps made by the Lunar Reconnaissance Orbiter. This array would give us unprecedented day‐to‐day knowledge of the electron environment around our planet, providing reports of Earth’s strong and weak radio emissions, giving both local and global information.Key PointsSynchrotron emission between 500 and 1,000 kHz has a total flux density of 1.4–2 Jy at lunar distancesA 10‐km radio array with 16,000 elements could detect the emission in 12–24 hr with moderate noiseChanging electron density can make detections 10 times faster at lunar night and 10 times slower at lunar noon
dc.publisherThe Astronomical Society of the Pacific
dc.publisherWiley Periodicals, Inc.
dc.subject.othersimulations
dc.subject.otherradio arrays
dc.subject.otherphotoelectron sheath
dc.subject.othersynchrotron
dc.subject.otherlunar
dc.subject.otherauroral emissions
dc.titleMeasuring the Earth’s Synchrotron Emission From Radiation Belts With a Lunar Near Side Radio Array
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154341/1/rds20874.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154341/2/rds20874_am.pdf
dc.identifier.doi10.1029/2019RS006891
dc.identifier.sourceRadio Science
dc.identifier.citedreferenceSantos‐Costa, D., & Bolton, S. J. ( 2008 ). Discussing the processes constraining the Jovian synchrotron radio emission’s features. Planetary and Space Science, 56 ( 3 ), 326 – 345. https://doi.org/10.1016/j.pss.2007.09.008
dc.identifier.citedreferenceNoordam, J. E. ( 2004 ). LOFAR calibration challenges. In Oschmann, J. M. (Ed.), Ground‐based telescopes (vol.  5489, pp. 817 – 825 ). Glasgow, United Kingdom: The Society of Photo-Optical Instrumentation Engineers.
dc.identifier.citedreferenceNovaco, J. C., & Brown, L. W. ( 1978 ). Nonthermal galactic emission below 10 megahertz. The Astrophysical Journal, 221, 114 – 123. https://doi.org/10.1086/156009
dc.identifier.citedreferenceOndoh, T. ( 2013 ). Polar hiss observed by isis satellites, Magnetospheric substorms (pp. 387 – 398 ). Washington, DC, USA: American Geophysical Union (AGU). https://doi.org/10.1029/GM064p0387
dc.identifier.citedreferencePacholczyk, A. G. ( 1970 ). Radio astrophysics. Nonthermal processes in galactic and extragalactic sources.
dc.identifier.citedreferencePierrard, V., Lopez Rosson, G., & Botek, E. ( 2019 ). Dynamics of megaelectron volt electrons observed in the inner belt by PROBA‐V/EPT. Journal of Geophysical Research: Space Physics, 124, 1651 – 1659. https://doi.org/10.1029/2018JA026289
dc.identifier.citedreferencePlanck, M. ( 1914 ). The theory of heat radiation. Philadelphia, PA, USA: P. Blakiston’s Son and Co. Authorized translation by Morton Masius.
dc.identifier.citedreferenceRayleigh, L. ( 1879 ). Xxxi. investigations in optics, with special reference to the spectroscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8 ( 49 ), 261 – 274. https://doi.org/10.1080/14786447908639684
dc.identifier.citedreferenceSantos‐Costa, D., Bolton, S. J., Sault, R. J., Thorne, R. M., & Levin, S. M. ( 2011 ). VLA observations at 6.2 cm of the response of Jupiter’s electron belt to the July 2009 event. Journal of Geophysical Research, 116, 12236. https://doi.org/10.1029/2011JA016921
dc.identifier.citedreferenceSantos‐Costa, D., & Bourdarie, S. A. ( 2001 ). Modeling the inner Jovian electron radiation belt including non‐equatorial particles. Planetary and Space Science, 49, 303 – 312. https://doi.org/10.1016/S0032-0633(00)00151-3
dc.identifier.citedreferenceSantos‐Costa, D., de Pater, I., Sault, R. J., Janssen, M. A., Levin, S. M., & Bolton, S. J. ( 2014 ). Multifrequency analysis of the Jovian electron‐belt radiation during the Cassini flyby of Jupiter. Astronomy & Astrophysics, 568, A61. https://doi.org/10.1051/0004-6361/201423896
dc.identifier.citedreferenceSazhin, S. S., Bullough, K., & Hayakawa, M. ( 1993 ). Auroral hiss: A review. Planetary and Space Science, 41 ( 2 ), 153 – 166. https://doi.org/10.1016/0032-0633(93)90045-4
dc.identifier.citedreferenceSicard, A., & Bourdarie, S. ( 2004 ). Physical electron belt model from Jupiter’s surface to the orbit of Europa. Journal of Geophysical Research, 109, A02216. https://doi.org/10.1029/2003JA010203
dc.identifier.citedreferenceSodha, M. S., & Mishra, S. K. ( 2014 ). Lunar photoelectron sheath and levitation of dust. Physics of Plasmas, 21 ( 9 ), 93704. https://doi.org/10.1063/1.4896345
dc.identifier.citedreferenceStubbs, T. J., Glenar, D. A., Farrell, W. M., Vondrak, R. R., Collier, M. R., Halekas, J. S., & Delory, G. T. ( 2011 ). On the role of dust in the lunar ionosphere. Planetary and Space Science, 59 ( 13 ), 1659 – 1664. https://doi.org/10.1016/j.pss.2011.05.011
dc.identifier.citedreference( 1999 ). Synthesis Imaging in Radio Astronomy II. Vol. 180.
dc.identifier.citedreferenceThompson, A. R., Emerson, D. T., & Schwab, F. R. ( 2007 ). Convenient formulas for quantization efficiency. Radio Science, 42 ( 3 ), RS3022. https://doi.org/10.1029/2006RS003585
dc.identifier.citedreferenceThompson, A. R., Moran, J. M., & Swenson, G. W. ( 1986 ). Interferometry and synthesis in radio astronomy.
dc.identifier.citedreferenceTingay, S. J., Goeke, R., Bowman, J. D., Emrich, D., Ord, S. M., Mitchell, D. A., Morales, M. F., Booler, T., Crosse, B., Wayth, R. B., Lonsdale, C. J., Tremblay, S., Pallot, D., Colegate, T., Wicenec, A., Kudryavtseva, N., Arcus, W., Barnes, D., Bernardi, G., Briggs, F., Burns, S., Bunton, J. D., Cappallo, R. J., Corey, B. E., Deshpande, A., Desouza, L., Gaensler, B. M., Greenhill, L. J., Hall, P. J., Hazelton, B. J., Herne, D., Hewitt, J. N., Johnston‐Hollitt, M., Kaplan, D. L., Kasper, J. C., Kincaid, B. B., Koenig, R., Kratzenberg, E., Lynch, M. J., Mckinley, B., Mcwhirter, S. R., Morgan, E., Oberoi, D., Pathikulangara, J., Prabu, T., Remillard, R. A., Rogers, A. E. E., Roshi, A., Salah, J. E., Sault, R. J., Udaya‐Shankar, N., Schlagenhaufer, F., Srivani, K. S., Stevens, J., Subrahmanyan, R., Waterson, M., Webster, R. L., Whitney, A. R., Williams, A., Williams, C. L., & Wyithe, J. S. B. ( 2013 ). The Murchison Widefield Array: The square kilometre array precursor at low radio frequencies. Publications of the Astronomical Society of Australia, 30, e007. https://doi.org/10.1017/pasa.2012.007
dc.identifier.citedreferencevan Haarlem, M. P., Wise, M. W., Gunst, A. W., Heald, G., McKean, J. P., Hessels, J. W. T., de Bruyn, A. G., Nijboer, R., Swinbank, J., Fallows, R., Brentjens, M., Nelles, A., Beck, R., Falcke, H., Fender, R., Hörandel, J., Koopmans, L. V. E., Mann, G., Miley, G., Röttgering, H., Stappers, B. W., Wijers, R. A. M. J., Zaroubi, S., van den Akker, M., Alexov, A., Anderson, J., Anderson, K., van Ardenne, A., Arts, M., Asgekar, A., Avruch, I. M., Batejat, F., Bähren, L., Bell, M. E., Bell, M. R., van Bemmel, I., Bennema, P., Bentum, M. J., Bernardi, G., Best, P., Bîrzan, L., Bonafede, A., Boonstra, A.‐J., Braun, R., Bregman, J., Breitling, F., van de Brink, R. H., Broderick, J., Broekema, P. C., Brouw, W. N., Brüggen, M., Butcher, H. R., van Cappellen, W., Ciardi, B., Coenen, T., Conway, J., Coolen, A., Corstanje, A., Damstra, S., Davies, O., Deller, A. T., Dettmar, R.‐J., van Diepen, G., Dijkstra, K., Donker, P., Doorduin, A., Dromer, J., Drost, M., van Duin, A., Eislöffel, J., van Enst, J., Ferrari, C., Frieswijk, W., Gankema, H., Garrett, M. A., de Gasperin, F., Gerbers, M., de Geus, E., Grießmeier, J.‐M., Grit, T., Gruppen, P., Hamaker, J. P., Hassall, T., Hoeft, M., Holties, H. A., Horneffer, A., van der Horst, A., van Houwelingen, A., Huijgen, A., Iacobelli, M., Intema, H., Jackson, N., Jelic, V., de Jong, A., Juette, E., Kant, D., Karastergiou, A., Koers, A., Kollen, H., Kondratiev, V. I., Kooistra, E., Koopman, Y., Koster, A., Kuniyoshi, M., Kramer, M., Kuper, G., Lambropoulos, P., Law, C., van Leeuwen, J., Lemaitre, J., Loose, M., Maat, P., Macario, G., Markoff, S., Masters, J., McFadden, R. A., McKay‐Bukowski, D., Meijering, H., Meulman, H., Mevius, M., Middelberg, E., Millenaar, R., Miller‐Jones, J. C. A., Mohan, R. N., Mol, J. D., Morawietz, J., Morganti, R., Mulcahy, D. D., Mulder, E., Munk, H., Nieuwenhuis, L., van Nieuwpoort, R., Noordam, J. E., Norden, M., Noutsos, A., Offringa, A. R., Olofsson, H., Omar, A., Orrú, E., Overeem, R., Paas, H., Pandey‐Pommier, M., Pandey, V. N., Pizzo, R., Polatidis, A., Rafferty, D., Rawlings, S., Reich, W., de Reijer, J.‐P., Reitsma, J., Renting, G. A., Riemers, P., Rol, E., Romein, J. W., Roosjen, J., Ruiter, M., Scaife, A., van der Schaaf, K., Scheers, B., Schellart, P., Schoenmakers, A., Schoonderbeek, G., Serylak, M., Shulevski, A., Sluman, J., Smirnov, O., Sobey, C., Spreeuw, H., Steinmetz, M., Sterks, C. G. M., Stiepel, H.‐J., Stuurwold, K., Tagger, M., Tang, Y., Tasse, C., Thomas, I., Thoudam, S., Toribio, M. C., van der Tol, B., Usov, O., van Veelen, M., van der Veen, A.‐J., ter Veen, S., Verbiest, J. P. W., Vermeulen, R., Vermaas, N., Vocks, C., Vogt, C., de Vos, M., van der Wal, E., van Weeren, R., Weggemans, H., Weltevrede, P., White, S., Wijnholds, S. J., Wilhelmsson, T., Wucknitz, O., Yatawatta, S., Zarka, P., Zensus, A., & van Zwieten, J. ( 2013 ). Lofar: The low‐frequency array. Astronomy and Astrophysics, 556 ( A2 ), 53. https://doi.org/10.1051/0004-6361/201220873
dc.identifier.citedreferenceVasil’Ev, M. B., Vinogradov, V. A., Vyshlov, A. S., Ivanovskii, O. G., Kolosov, M. A., Savich, N. A., Samovol, V. A., Samoznaev, L. N., Sidorenko, A. I., Sheikhet, A. I., & Shtern, D. Y. ( 1974 ). Radio transparency of circumlunar space using the Luna‐19 station. Cosmic Research, 12, 102.
dc.identifier.citedreferenceVocks, C., Mann, G., Breitling, F., Bisi, M. M., Dabrowski, B., Fallows, R., Gallagher, P. T., Krankowski, A., Magdalenić, J., Marqué, C., Morosan, D., & Rucker, H. ( 2018 ). Lofar observations of the quiet solar corona. Astronomy and Astrophysics, 614, A54. https://doi.org/10.1051/0004-6361/201630067
dc.identifier.citedreferenceVyshlov, A. S. ( 1976 ). Preliminary results of circumlunar plasma research by the Luna 22 spacecraft. In M. J. Rycroft (Ed.), Space research xvi (pp. 945 – 949 ). Varna, Bulgaria: Akademie Verlag.
dc.identifier.citedreferenceVyshlov, A. S., & Savich, N. A. ( 1979 ). Observations of radio source occultations by the moon and the nature of the plasma near the Moon. Cosmic Research, 16, 551 – 556.
dc.identifier.citedreferenceWoody, D. ( 2001a ). Radio interferometer array point spread functions I. theory and statistics. ALMA Memo Series, 389.
dc.identifier.citedreferenceWoody, D. ( 2001b ). Radio interferometer array point spread functions II. evaluation and optimization. ALMA Memo Series, 390.
dc.identifier.citedreferenceWu, C. S., & Lee, L. C. ( 1979 ). A theory of the terrestrial kilometric radiation. The Astrophysical Journal, 230, 621 – 626. https://doi.org/10.1086/157120
dc.identifier.citedreferenceZaslavsky, A., Meyer‐Vernet, N., Hoang, S., Maksimovic, M., & Bale, S. D. ( 2011 ). On the antenna calibration of space radio instruments using the galactic background: General formulas and application to stereo/waves. Radio Science, 46, RS2008. https://doi.org/10.1029/2010RS004464
dc.identifier.citedreferenceZyma, K., Girard, J. N., Landquist, E., Schaper, G., & Vasko, F. J. ( 2017 ). Formulating and solving a radio astronomy antenna connection problem as a generalized cable‐trench problem: An empirical study. International Transactions in Operational Research, 24 ( 5 ), 943 – 957. https://doi.org/10.1111/itor.12312
dc.identifier.citedreferenceBougeret, J. L., Goetz, K., Kaiser, M. L., Bale, S. D., Kellogg, P. J., Maksimovic, M., Monge, N., Monson, S. J., Astier, P. L., Davy, S., Dekkali, M., Hinze, J. J., Manning, R. E., Aguilar‐Rodriguez, E., Bonnin, X., Briand, C., Cairns, I. H., Cattell, C. A., Cecconi, B., Eastwood, J., Ergun, R. E., Fainberg, J., Hoang, S., Huttunen, K. E. J., Krucker, S., Lecacheux, A., MacDowall, R. J., Macher, W., Mangeney, A., Meetre, C. A., Moussas, X., Nguyen, Q. N., Oswald, T. H., Pulupa, M., Reiner, M. J., Robinson, P. A., Rucker, H., Salem, C., Santolik, O., Silvis, J. M., Ullrich, R., Zarka, P., & Zouganelis, I. ( 2008 ). S/waves: The radio and plasma wave investigation on the stereo mission. Space Science Reviews, 136 ( 1 ), 487 – 528. https://doi.org/10.1007/s11214-007-9298-8
dc.identifier.citedreferenceBourdarie, S., Boscher, D., Beutier, T., Sauvaud, J.‐A., & Blanc, M. ( 1996 ). Magnetic storm modeling in the Earth’s electron belt by the salammbô code. Journal of Geophysical Research, 101 ( A12 ), 27,171 – 27,176. https://doi.org/10.1029/96JA02284
dc.identifier.citedreferenceActon, C. H. ( 1996 ). Ancillary data services of NASA’s Navigation and Ancillary Information Facility. Planetary and Space Science, 44, 65 – 70. https://doi.org/10.1016/0032-0633(95)00107-7
dc.identifier.citedreferenceAndrew, B. H., Branson, N. J. B. A., & Wills, D. ( 1964 ). Radio observation of the crab nebula during a lunar occultation. Nature, 203, 171 – 173. https://doi.org/10.1038/203171b0
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ). The THEMIS Mission. Space Science Reviews, 141, 5 – 34. https://doi.org/10.1007/s11214-008-9336-1
dc.identifier.citedreferenceBaker, D. N., Hoxie, V., Zhao, H., Jaynes, A. N., Kanekal, S., Li, X., & Elkington, S. ( 2019 ). Multiyear measurements of radiation belt electrons: Acceleration, transport, and loss. Journal of Geophysical Research: Space Physics, 124, 2588 – 2602. https://doi.org/10.1029/2018JA026259
dc.identifier.citedreferenceBaker, D. N., Jaynes, A. N., Hoxie, V. C., Thorne, R. M., Foster, J. C., Li, X., Fennell, J. F., Wygant, J. R., Kanekal, S. G., Erickson, P. J., Kurth, W., Li, W., Ma, Q., Schiller, Q., Blum, L., Malaspina, D. M., Gerrard, A., & Lanzerotti, L. J. ( 2014 ). An impenetrable barrier to ultrarelativistic electrons in the van allen radiation belts. Nature, 515, 531. https://doi.org/10.1038/nature13956
dc.identifier.citedreferenceBale, S. D., Ullrich, R., Goetz, K., Alster, N., Cecconi, B., Dekkali, M., Lingner, N. R., Macher, W., Manning, R. E., McCauley, J., Monson, S. J., Oswald, T. H., & Pulupa, M. ( 2008 ). The electric antennas for the stereo/waves experiment. Space Science Reviews, 136 ( 1 ), 529 – 547. https://doi.org/10.1007/s11214-007-9251-x
dc.identifier.citedreferenceBarker, M. K., Mazarico, E., Neumann, G. A., Zuber, M. T., Haruyama, J., & Smith, D. E. ( 2016 ). A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus, 273, 346 – 355. https://doi.org/10.1016/j.icarus.2015.07.039
dc.identifier.citedreferenceBeutier, T., & Boscher, D. ( 1995 ). A three‐dimensional analysis of the electron radiation belt by the Salammbô code. Journal of Geophysical Research, 100 ( A8 ), 14,853 – 14,861. https://doi.org/10.1029/94JA03066
dc.identifier.citedreferenceBolton, S. J., Janssen, M., Thorne, R., Levin, S., Klein, M., Gulkis, S., Bastian, T., Sault, R., Elachi, C., Hofstadter, M., Bunker, A., Dulk, G., Gudim, E., Hamilton, G., Johnson, W. T. K., Leblanc, Y., Liepack, O., McLeod, R., Roller, J., Roth, L., & West, R. ( 2002 ). Ultra‐relativistic electrons in jupiter's radiation belts. Nature, 415, 987. https://doi.org/10.1038/415987a
dc.identifier.citedreferenceBoone, F. ( 2001 ). Interferometric array design: Optimizing the locations of the antenna pads. Astronomy and Astrophysics, 377 ( 1 ), 368 – 376. https://doi.org/10.1051/0004-6361:20011105
dc.identifier.citedreferenceBoone, F. ( 2002 ). Interferometric array design: Distributions of fourier samples for imaging. Astronomy and Astrophysics, 386 ( 3 ), 1160 – 1171. https://doi.org/10.1051/0004-6361:20020297
dc.identifier.citedreferenceBoscher, D., Bourdarie, S., Thorne, R., & Abel, B. ( 2000 ). Influence of the wave characteristics on the electron radiation belt distribution. Advances in Space Research, 26 ( 1 ), 163 – 166. https://doi.org/10.1016/S0273-1177(99)01043-1
dc.identifier.citedreferenceBriggs, D. S., Schwab, F. R., & Sramek, R. A. ( 1999 ). Imaging. In G. B. Taylor, C. L. Carilli, & R. A. Perley (Eds.), Synthesis imaging in radio astronomy ii (vol.  180, pp. 127 ), Astronomical Society of the Pacific Conference Series. Socorro, New Mexico, USA: The Astronomical Society of the Pacific.
dc.identifier.citedreferenceCalvert, W. ( 1981 ). The auroral plasma cavity. Geophysical Research Letters, 8 ( 8 ), 919 – 921. https://doi.org/10.1029/GL008i008p00919.,
dc.identifier.citedreferenceCane, H. V. ( 1979 ). Spectra of the non‐thermal radio radiation from the galactic polar regions. Monthly Notices of the Royal Astronomical Society, 189 ( 3 ), 465 – 478. https://doi.org/10.1093/mnras/189.3.465
dc.identifier.citedreferenceCarr, T. D., Desch, M. D., & Alexander, J. K. ( 1983 ). Phenomenology of magnetospheric radio emissions. In A. J. Dessler (Ed.), Physics of the jovian magnetosphere (pp. 226 – 284 ). New York: Cambridge Univ. Press.
dc.identifier.citedreferenceChandran, S. B. R., Renuka, G., & Venugopal, C. ( 2013 ). Plasma electron temperature variability in lunar surface potential and in electric field under average solar wind conditions. Advances in Space Research, 51 ( 9 ), 1622 – 1626. https://doi.org/10.1016/j.asr.2013.01.016
dc.identifier.citedreferenceChin, G., Brylow, S., Foote, M., Garvin, J., Kasper, J., Keller, J., Litvak, M., Mitrofanov, I., Paige, D., Raney, K., Robinson, M., Sanin, A., Smith, D., Spence, H., Spudis, P., Stern, S. A., & Zuber, M. ( 2007 ). Lunar Reconnaissance Orbiter overview: The instrument suite and mission. Space Science Reviews, 129 ( 4 ), 391 – 419. https://doi.org/10.1007/s11214-007-9153-y
dc.identifier.citedreferenceColwell, J. E., Batiste, S., HorÃąnyi, M., Robertson, S., & Sture, S. ( 2007 ). Lunar surface: Dust dynamics and regolith mechanics. Reviews of Geophysics, 45 ( 2 ), RG2006. https://doi.org/10.1029/2005RG000184
dc.identifier.citedreferenceCornwell, T. J. ( 2008 ). Multiscale clean deconvolution of radio synthesis images. IEEE Journal of Selected Topics in Signal Processing, 2 ( 5 ), 793 – 801.
dc.identifier.citedreferenceEllingson, S. W. ( 2011 ). Sensitivity of antenna arrays for long‐wavelength radio astronomy. IEEE Transactions on Antennas and Propagation, 59 ( 6 ), 1855 – 1863. https://doi.org/10.1109/TAP.2011.2122230
dc.identifier.citedreferenceEllingson, S. W., Clarke, T. E., Cohen, A., Craig, J., Kassim, N. E., Pihlstrom, Y., Rickard, L. J., & Taylor, G. B. ( 2009 ). The long wavelength array. Proceedings of the IEEE, 97 ( 8 ), 1421 – 1430. https://doi.org/10.1109/JPROC.2009.2015683
dc.identifier.citedreferenceElsmore, B. ( 1957 ). Radio observations of the lunar atmosphere. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 2 ( 20 ), 1040 – 1046. https://doi.org/10.1080/14786435708238210
dc.identifier.citedreferenceFoster, J. C., Erickson, P. J., Baker, D. N., Jaynes, A. N., Mishin, E. V., Fennel, J. F., Li, X., Henderson, M. G., & Kanekal, S. G. ( 2016 ). Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm. Journal of Geophysical Research: Space Physics, 121, 5537 – 5548. https://doi.org/10.1002/2016JA022509
dc.identifier.citedreferenceGirard, J. ( 2013 ). Dèveloppement de la Super Station LOFAR & observations planètaires avec LOFAR. Instrumentation et mèthodes pour l’astrophysique [astro‐ph.IM]. Thèse de Doctorat, Observatoire de Paris, France. Retrieved from tel‐00835834v2.
dc.identifier.citedreferenceGirard, J. N., Zarka, P., Tasse, C., Hess, S., de Pater, I., Santos‐Costa, D., Nènon, Q., Sicard, A., Bourdarie, S., Anderson, J., Asgekar, A., Bell, M. E., van Bemmel, I., Bentum, M. J., Bernardi, G., Best, P., Bonafede, A., Breitling, F., Breton, R. P., Broderick, J. W., Brouw, W. N., Bruggen, M., Ciardi, B., Corbel, S., Corstanje, A., de Gasperin, F., de Geus, E., Deller, A., Duscha, S., Eislöffel, J., Falcke, H., Frieswijk, W., Garrett, M. A., Grießmeier, J. G., Hessels, J. W. T., Hoeft, M., Hörandel, J., Iacobelli, M., Juette, E., Kondratiev, V. I., Kuniyoshi, M., Kuper, G., van Leeuwen, J., Loose, M., Maat, P., Mann, G., Markoff, S., McFadden, R., McKay‐Bukowski, D., Moldon, J., Munk, H., Nelles, A., Norden, MJ, Orru, E., Paas, H., Pandey‐Pommier, M., Pizzo, R., Polatidis, A. G., Reich, W., Röttgering, H., Rowlinson, A., Schwarz, D., Smirnov, O., Steinmetz, M., Swinbank, J., Tagger, M., Thoudam, S., Toribio, M. C., Vermeulen, R., Vocks, C., van Weeren, R. J., Wijers, R. A. M. J., & Wucknitz, O. ( 2016 ). Imaging Jupiter’s radiation belts down to 127 MHz with LOFAR. Astronomy and Astrophysics, 587 ( A3 ), 1 – 11.
dc.identifier.citedreferenceGraham, S., & Reckart, T. ( 2019 ). Nasa‐provided lunar payloads. NASA Glenn Research Center,Retrieved from https://www1.grc.nasa.gov/space/planetary-exploration-science-technology-office-pesto/management/nasa-provided-lunar-payloads/,.
dc.identifier.citedreferenceGurnett, D. A. ( 1974 ). The earth as a radio source: Terrestrial kilometric radiation. Journal of Geophysical Research, 79 ( 28 ), 4227 – 4238. https://doi.org/10.1029/JA079i028p04227
dc.identifier.citedreferenceHögbom, J. A. ( 1974 ). Aperture synthesis with a non‐regular distribution of interferometer baselines. Astronomy and Astrophysics Supplement, 15, 417.
dc.identifier.citedreferenceHan, S., Murakami, G., Kita, H., Tsuchiya, F., Tao, C., Misawa, H., Yamazaki, A., & Nakamura, M. ( 2018 ). Investigating solar wind‐driven electric field influence on long‐term dynamics of Jovian synchrotron radiation. Journal of Geophysical Research: Space Physics, 123, 9508 – 9516. https://doi.org/10.1029/2018JA025849
dc.identifier.citedreferenceHicks, B. C., Paravastu‐Dalal, N., Stewart, K. P., Erickson, W. C., Ray, P. S., Kassim, N. E., Burns, S., Clarke, T., Schmitt, H., Craig, J., Hartman, J., & Weiler, K. W. ( 2012 ). A wide‐band, active antenna system for long wavelength radio astronomy. Publications of the Astronomical Society of the Pacific, 124 ( 920 ), 1090 – 1104. https://doi.org/10.1086/2F668121
dc.identifier.citedreferenceHughes, J. M., & LaBelle, J. ( 1998 ). The latitude dependence of auroral roar. Journal of Geophysical Research, 103 ( A7 ), 14,911 – 14,915. https://doi.org/10.1029/98JA01038
dc.identifier.citedreferenceReames, D. V. ( 2013 ). The two sources of solar energetic particles. Space Science Reviews, 175 ( 1 ), 53 – 92. https://doi.org/10.1007/s11214-013-9958-9
dc.identifier.citedreferenceImamura, T., Nabatov, A., Mochizuki, N., Iwata, T., Hanada, H., Matsumoto, K., Noda, H., Kono, Y., Liu, Q., Futaana, Y., Ando, H., Yamamoto, Z., Oyama, K.‐I., & Saito, A. ( 2012 ). Radio occultation measurement of the electron density near the lunar surface using a subsatellite on the SELENE mission. Journal of Geophysical Research, 117, A06303. https://doi.org/10.1029/2011JA017293
dc.identifier.citedreferenceJun, I., & Garrett, H. B. ( 2005 ). Comparison of high‐energy trapped particle environments at the earth and jupiter. Radiation Protection Dosimetry, 116 ( 1‐4 ), 50 – 54. https://doi.org/10.1093/rpd/nci074
dc.identifier.citedreferenceKeto, E. ( 2012 ). Hierarchical configurations for cross‐correlation interferometers with many elements. Journal of Astronomical Instrumentation, 01 ( 01 ), 1250007. https://doi.org/10.1142/S2251171712500079
dc.identifier.citedreferenceLaBelle, J., Shepherd, S. G., & Trimpi, M. L. ( 1997 ). Observations of auroral medium frequency bursts. Journal of Geophysical Research, 102, 22,221 – 22,232. https://doi.org/10.1029/97JA01905
dc.identifier.citedreferenceLaBelle, J., Trimpi, M. L., Brittain, R., & Weatherwax, A. T. ( 1995 ). Fine structure of auroral roar emissions. Journal of Geophysical Research, 100 ( A11 ), 21,953 – 21,959. https://doi.org/10.1029/95JA01551
dc.identifier.citedreferenceLamy, L, Zarka, P., Cecconi, B., & Prangé, R. ( 2010 ). AKR diurnal, semi‐diurnal and shorter term modulations disentangled by Cassini/RPWS observations. Journal of Geophysical Research, 115 ( A09221 ). https://doi.org/10.1029/2010JA015434
dc.identifier.citedreferenceMaget, V., Sicard‐Piet, A., Bourdarie, S., Lazaro, D., Turner, D. L., Daglis, I. A., & Sandberg, I. ( 2015 ). Improved outer boundary conditions for outer radiation belt data assimilation using THEMIS‐SST data and the salammbo‐enkf code. Journal of Geophysical Research: Space Physics, 120, 5608 – 5622. https://doi.org/10.1002/2015JA021001
dc.identifier.citedreferenceManning, R., & Dulk, G. A. ( 2001 ). The galactic background radiation from 0.2 to 13.8 MHz. Astronomy & Astrophysics, 372 ( 2 ), 663 – 666. https://doi.org/10.1051/0004-6361:20010516
dc.identifier.citedreferenceMartí‐Vidal, I., Pérez‐Torres, M. A., & Lobanov, A. P. ( 2012 ). Over‐resolution of compact sources in interferometric observations. Astronomy & Astrophysics, 541, A135. https://doi.org/10.1051/0004-6361/201118334
dc.identifier.citedreferenceMcMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. ( 2007 ). CASA Architecture and Applications. In Shaw, R. A., Hill, F., & Bell, D. J. (Eds.), Astronomical data analysis software and systems xvi (vol.  376, pp. 127 ), Astronomical Society of the Pacific Conference Series. Tucson, Arizona, USA: The Astronomical Society of the Pacific.
dc.identifier.citedreferenceMeyer‐Vernet, N., Hoang, S., Issautier, K., Moncuquet, M., & Marcos, G. ( 2000 ). Plasma thermal noise: The long wavelength radio limit, Radio astronomy at long wavelengths (pp. 67 – 74 ). Washington, DC, USA: American Geophysical Union (AGU). https://doi.org/10.1029/GM119p0067
dc.identifier.citedreferenceMeyer‐Vernet, N., & Perche, C. ( 1989 ). Tool kit for antennae and thermal noise near the plasma frequency. Journal of Geophysical Research, 94 ( A3 ), 2405 – 2415. https://doi.org/10.1029/JA094iA03p02405
dc.identifier.citedreferenceMishra, S. K., & Misra, S. ( 2018 ). An analytical investigation: Effect of solar wind on lunar photoelectron sheath. Physics of Plasmas, 25 ( 2 ), 23702. https://doi.org/10.1063/1.5021260
dc.identifier.citedreferenceMorgan, D., & A. Gurnett, D. ( 1991 ). The source location and beaming of terrestrial continuum radiation. Journal of Geophysical Research, 96, 9595 – 9613. https://doi.org/10.1029/91JA00314
dc.identifier.citedreferenceMutel, R. L., Christopher, I. W., & Pickett, J. S. ( 2008 ). Cluster multispacecraft determination of AKR angular beaming. Geophysical Research Letters, 35, L07104. https://doi.org/10.1029/2008GL033377
dc.identifier.citedreferenceNènon, Q., Sicard, A., & Bourdarie, S. ( 2017 ). A new physical model of the electron radiation belts of jupiter inside Europa’s orbit. Journal of Geophysical Research: Space Physics, 122, 5148 – 5167. https://doi.org/10.1002/2017JA023893
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.