Show simple item record

Short‐wave infrared light imaging measures tissue moisture and distinguishes superficial from deep burns

dc.contributor.authorMironov, Sergey
dc.contributor.authorHwang, Charles D.
dc.contributor.authorNemzek, Jean
dc.contributor.authorLi, John
dc.contributor.authorRanganathan, Kavitha
dc.contributor.authorButts, Jonathan T.
dc.contributor.authorCholok, David J.
dc.contributor.authorDolgachev, Vladislav A.
dc.contributor.authorWang, Stewart C.
dc.contributor.authorHemmila, Mark
dc.contributor.authorCederna, Paul S.
dc.contributor.authorMorris, Michael D.
dc.contributor.authorBerenfeld, Omer
dc.contributor.authorLevi, Benjamin
dc.date.accessioned2020-03-17T18:29:40Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:29:40Z
dc.date.issued2020-03
dc.identifier.citationMironov, Sergey; Hwang, Charles D.; Nemzek, Jean; Li, John; Ranganathan, Kavitha; Butts, Jonathan T.; Cholok, David J.; Dolgachev, Vladislav A.; Wang, Stewart C.; Hemmila, Mark; Cederna, Paul S.; Morris, Michael D.; Berenfeld, Omer; Levi, Benjamin (2020). "Short‐wave infrared light imaging measures tissue moisture and distinguishes superficial from deep burns." Wound Repair and Regeneration 28(2): 185-193.
dc.identifier.issn1067-1927
dc.identifier.issn1524-475X
dc.identifier.urihttps://hdl.handle.net/2027.42/154351
dc.description.abstractExisting clinical approaches and tools to measure burn tissue destruction are limited resulting in misdiagnosis of injury depth in over 40% of cases. Thus, our objective in this study was to characterize the ability of short‐wave infrared (SWIR) imaging to detect moisture levels as a surrogate for tissue viability with resolution to differentiate between burns of various depths. To accomplish our aim, we constructed an imaging system consisting of a broad‐band Tungsten light source; 1,200‐, 1,650‐, 1,940‐, and 2,250‐nm wavelength filters; and a specialized SWIR camera. We initially used agar slabs to provide a baseline spectrum for SWIR light imaging and demonstrated the differential absorbance at the multiple wavelengths, with 1,940 nm being the highest absorbed wavelength. These spectral bands were then demonstrated to detect levels of moisture in inorganic and in vivo mice models. The multiwavelength SWIR imaging approach was used to diagnose depth of burns using an in vivo porcine burn model. Healthy and injured skin regions were imaged 72 hours after short (20 seconds) and long (60 seconds) burn application, and biopsies were extracted from those regions for histologic analysis. Burn depth analysis based on collagen coagulation histology confirmed the formation of superficial and deep burns. SWIR multispectral reflectance imaging showed enhanced intensity levels in long burned regions, which correlated with histology and distinguished between superficial and deep burns. This SWIR imaging method represents a novel, real‐time method to objectively distinguishing superficial from deep burns.
dc.publisherJohn Wiley & Sons, Inc.
dc.titleShort‐wave infrared light imaging measures tissue moisture and distinguishes superficial from deep burns
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154351/1/wrr12779_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154351/2/wrr12779.pdf
dc.identifier.doi10.1111/wrr.12779
dc.identifier.sourceWound Repair and Regeneration
dc.identifier.citedreferenceBashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 2005; 38: 2543 – 55.
dc.identifier.citedreferenceLevi B, Jayakumar P, Giladi A, Jupiter JB, Ring DC, Kowalske K, et al. Risk factors for the development of heterotopic ossification in seriously burned adults: a National Institute on Disability, Independent Living and Rehabilitation Research burn model system database analysis. J Trauma Acute Care Surg 2015; 79: 870 – 6.
dc.identifier.citedreferenceSaffle JR. Critical care management of the severely burned patient. In: Parrillo JE, editor Critical care medicine, 4th ed. Saunders, Philadelphia, PA, 2014; 1177 – 98.
dc.identifier.citedreferenceLoder S, Peterson JR, Agarwal S, Eboda O, Brownley C, DeLaRosa S, et al. Wound healing after thermal injury is improved by fat and adipose‐derived stem cell isografts. J Burn Care Res 2015; 36: 70 – 6.
dc.identifier.citedreferenceHeimbach D, Engrav L, Grube B, Marvin J. Burn depth: a review. World J Surg 1992; 16: 10 – 5.
dc.identifier.citedreferenceCross KM, Leonardi L, Payette JR, et al. Clinical utilization of near‐infrared spectroscopy devices for burn depth assessment. Wound Repair Regen 2007; 15: 332 – 40.
dc.identifier.citedreferenceEdgar DW, Briffa NK, Cole J, Tan MH, Khoo B, Goh J, et al. Measurement of acute edema shifts in human burn survivors—the reliability and sensitivity of bioimpedence spectroscopy as an objective clinical measure. J Burn Care Res 2009; 30: 818 – 23.
dc.identifier.citedreferenceEgawa M, Yanai M, Maruyama N, Fukaya Y, Hirao T. Visualization of water distribution in the facial epidermal layers of skin using high‐sensitivity near‐infrared (NIR) imaging. Appl Spectrosc 2015; 69: 481 – 7.
dc.identifier.citedreferenceArimoto H, Egawa M. Imaging wavelength and light penetration depth for water content distribution measurement of skin. Skin Res Technol 2015; 21: 94 – 100.
dc.identifier.citedreferenceEzerskaia A, Uzunbajakava NE, Puppels GJ, de Sterke J, Caspers PJ, Urbach HP, et al. Potential of short‐wave infrared spectroscopy for quantitative depth profiling of stratum corneum lipids and water in dermatology. Biomed Opt Express 2018; 9: 2436 – 50.
dc.identifier.citedreferenceVergou T, Schanzer S, Richter H, Pels R, Thiede G, Patzelt A, et al. Comparison between TEWL and laser scanning microscopy measurements for the in vivo characterization of the human epidermal barrier. J Biophotonics 2012; 5: 152 – 8.
dc.identifier.citedreferenceRosado C, Rodrigues LM. In vivo study of the physiological impact of stratum corneum sampling methods. Int J Cosmet Sci 2003; 25: 37 – 44.
dc.identifier.citedreferenceChen AI, Balter ML, Chen MI, Gross D, Alam SK, Maguire TJ, et al. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. Med Phys 2016; 43: 3117 – 31.
dc.identifier.citedreferenceAli JH, Wang WB, Zevallos M, Alfano RR. Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues. Technol Cancer Res Treat 2004; 3: 491 – 7.
dc.identifier.citedreferenceSinger AJ, Hirth D, McClain SA, Crawford L, Lin F, Clark RA. Validation of a vertical progression porcine burn model. J Burn Care Res 2011; 32: 638 – 46.
dc.identifier.citedreferenceChvapil M, Speer DP, Owen JA, Chvapil TA. Identification of the depth of burn injury by collagen stainability. Plast Reconstr Surg 1984; 73: 438 – 41.
dc.identifier.citedreferenceMeyerholz DK, Piester TL, Sokolich JC, Zamba GK, Light TD. Morphological parameters for assessment of burn severity in an acute burn injury rat model. Int J Exp Pathol 2009; 90: 26 – 33.
dc.identifier.citedreferencePapp A, Kiraly K, Harma M, Lahtinen T, Uusaro A, Alhava E. The progression of burn depth in experimental burns: a histological and methodological study. Burns 2004; 30: 684 – 90.
dc.identifier.citedreferenceWilson RH, Nadeau KP, Jaworski FB, Tromberg BJ, Durkin AJ. Review of short‐wave infrared spectroscopy and imaging methods for biological tissue characterization. J Biomed Opt 2015; 20: 030901.
dc.identifier.citedreferenceSen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 2009; 17: 763 – 71.
dc.identifier.citedreferenceZamora‐Rojas E, Aernouts B, Garrido‐Varo A, Saeys W, Pérez‐Marín D, Guerrero‐Ginel JE. Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements. Innovative Food Sci Emerg Technol 2013; 20: 343 – 9. https://doi.org/10.1016/j.ifset.2013.06.008
dc.identifier.citedreferenceEdgar MP, Gibson GM, Bowman RW, Sun B, Radwell N, Mitchell KJ, et al. Simultaneous real‐time visible and infrared video with single‐pixel detectors. Sci Rep 2015; 5: 10669.
dc.identifier.citedreferenceCerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg BJ. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 2006; 11: 044005.
dc.identifier.citedreferenceWang J, Geng YJ, Guo B, Klima T, Lal BN, Willerson JT, et al. Near‐infrared spectroscopic characterization of human advanced atherosclerotic plaques. J Am Coll Cardiol 2002; 39: 1305 – 13.
dc.identifier.citedreferenceHeimbach DM, Afromowitz MA, Engrav LH, Marvin JA, Perry B. Burn depth estimation—man or machine. J Trauma 1984; 24: 373 – 8.
dc.identifier.citedreferenceDevgan L, Bhat S, Aylward S, Spence RJ. Modalities for the assessment of burn wound depth. J Burns Wounds 2006; 5: e2.
dc.identifier.citedreferenceHoeksema H, Van de Sijpe K, Tondu T, Hamdi M, Van Landuyt K, Blondeel P, et al. Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns 2009; 35: 36 – 45.
dc.identifier.citedreferenceCross KM, Leonardi L, Gomez M, Freisen JR, Levasseur MA, Schattka BJ, et al. Noninvasive measurement of edema in partial thickness burn wounds. J Burn Care Res 2009; 30: 807 – 17.
dc.identifier.citedreferenceSullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen 2001; 9: 66 – 76.
dc.identifier.citedreferenceKauvar DS, Wolf SE, Wade CE, Cancio LC, Renz EM, Holcomb JB. Burns sustained in combat explosions in Operations Iraqi and Enduring Freedom (OIF/OEF explosion burns). Burns 2006; 32: 853 – 7.
dc.identifier.citedreferenceD’Avignon LC, Chung KK, Saffle JR, Renz EM, Cancio LC, Prevention of Combat‐Related Infections Guidelines Panel. Prevention of infections associated with combat‐related burn injuries. J Trauma 2011; 71: S282 – 9.
dc.identifier.citedreferenceHospenthal DR, Murray CK, Andersen RC, Bell RB, Calhoun JH, Cancio LC, et al. Executive summary: guidelines for the prevention of infections associated with combat‐related injuries: 2011 update: endorsed by the Infectious Diseases Society of America and the Surgical Infection Society. J Trauma 2011; 71: S202 – 9.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.