Show simple item record

Adverse functions of IL‐17A in experimental sepsis

dc.contributor.authorFlierl, Michael A.
dc.contributor.authorRittirsch, Daniel
dc.contributor.authorGao, Hongwei
dc.contributor.authorHoesel, Laszlo M.
dc.contributor.authorNadeau, Brian A.
dc.contributor.authorDay, Danielle E.
dc.contributor.authorZetoune, Firas S.
dc.contributor.authorSarma, J. Vidya
dc.contributor.authorHuber-Lang, Markus S.
dc.contributor.authorFerrara, James L. M.
dc.contributor.authorWard, Peter A.
dc.date.accessioned2020-03-17T18:29:41Z
dc.date.available2020-03-17T18:29:41Z
dc.date.issued2008-07
dc.identifier.citationFlierl, Michael A.; Rittirsch, Daniel; Gao, Hongwei; Hoesel, Laszlo M.; Nadeau, Brian A.; Day, Danielle E.; Zetoune, Firas S.; Sarma, J. Vidya; Huber-Lang, Markus S.; Ferrara, James L. M.; Ward, Peter A. (2008). "Adverse functions of IL‐17A in experimental sepsis." The FASEB Journal 22(7): 2198-2205.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154352
dc.description.abstractIL‐17A is a proinflammatory cytokine produced by a variety of cells. In the current study, we examined the role of IL‐17A in sepsis induced in mice by cecal ligation and puncture (CLP). IL‐17A levels, which rose time‐dependently in plasma after CLP, were not affected in the absence of αβ T cells or neutrophils. In sharp contrast, γδ T cell‐knockout or γδ T cell‐depleted mice displayed baseline IL‐17A plasma levels after CLP. Neutralization of IL‐17A by two different antibodies improved sepsis (survival from ~10% to nearly 60%). Unexpectedly, antibody treatment was protective, even when administration of anti‐IL‐17A was delayed for up to 12 h after CLP. These protective effects of IL‐17A blockade were associated with substantially reduced levels of bacteremia together with significant reductions of systemic proinflammatory cytokines and chemokines in plasma. In vitro incubation of mouse peritoneal macrophages with lipopolysaccharide (LPS) in the copresence of IL‐17A substantially increased the production of TNF‐α, IL‐1β, and IL‐6 by these cells. These data suggest that, during experimental sepsis, γδ T cell‐derived IL‐17A promotes high levels of proinflammatory mediators and bacteremia, resulting in enhanced lethality. IL‐17A may be a potential therapeutic target in sepsis.—Flierl, M. A., Rittirsch, D., Gao, H., Hoesel, L. M., Nadeau, B. A., Day, D. E., Zetoune, F. S., Sarma, J. V., Huber‐Lang, M. S., Ferrara, J. L. M., Ward, P. A. Adverse functions of IL‐17A in experimental sepsis. FASEB J. 22, 2198–2205 (2008)
dc.publisherWiley Periodicals, Inc.
dc.subject.otherchemokines
dc.subject.othercolony-forming units
dc.subject.othersurvival
dc.subject.otherT cells
dc.subject.othery8
dc.subject.othercytokines
dc.titleAdverse functions of IL‐17A in experimental sepsis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154352/1/fsb2fj07105221.pdf
dc.identifier.doi10.1096/fj.07-105221
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceKebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., Giuliani, F., Arbour, N., Becher, B., Prat, A. ( 2007 ) Human T(H)17 lymphocytes promote blood- brain barrier disruption and central nervous system inflamma tion. Nat. Med. 13, 1173 – 1175
dc.identifier.citedreferenceBettelli, E., Oukka, M., Kuchroo, V. K. ( 2007 ) T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8, 345 – 350
dc.identifier.citedreferenceBaker, C. C., Chaudry, I. H., Gaines, H. O., Baue, A. E. ( 1983 ) Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94, 331 335
dc.identifier.citedreferenceMaeda, Y., Reddy, P., Lowler, K. P., Liu, C., Bishop, D. K., Ferrara, J. L. ( 2005 ) Critical role of host gammadelta T cells in experimental acute graft-versus-host disease. Blood 106, 749 – 755
dc.identifier.citedreferenceSakai, T., Ohara-Inagaki, K., Tsuzuki, T., Yoshikai, Y. ( 1995 ) Host intestinal intraepithelial gamma delta T lymphocytes present during acute graft-versus-host disease in mice may contribute to the development of enteropathy. Eur. J. Immunol. 25, 87 – 91
dc.identifier.citedreferenceMolet, S., Hamid, Q., Davoine, F., Nutku, E., Taha, R., Page, N., Olivenstein, R., Elias, J., Chakir, J. ( 2001 ) IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J. Allergy Clin. Immunol. 108, 430 – 438
dc.identifier.citedreferenceFerretti, S., Bonneau, O., Dubois, G. R., Jones, C. E., Trifilieff, A. ( 2003 ) IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J. Immunol. 170, 2106 – 2112
dc.identifier.citedreferenceAwane, M., Andres, P. G., Li, D. J., Reinecker, H. C. ( 1999 ) NF-kappa B-inducing kinase is a common mediator of IL-17-, TNF-alpha-, and IL-1 beta-induced chemokine promoter activa tion in intestinal epithelial cells. J. Immunol. 162, 5337 – 5344
dc.identifier.citedreferenceYokota, N., Daniels, F., Crosson, J., Rabb, H. ( 2002 ) Protective effect of T cell depletion in murine renal ischemia-reperfusion injury. Transplantation 74, 759 – 763
dc.identifier.citedreferencePark, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., Wang, Y. H., Wang, Y., Hood, L., Zhu, Z., Tian, Q., Dong, C. ( 2005 ) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133 – 1141
dc.identifier.citedreferenceWynn, T. A. ( 2005 ) T(H)-17: a giant step from T(H)1 and T(H)2. Nat. Immunol. 6, 1069 – 1070
dc.identifier.citedreferenceWilson, N. J., Boniface, K., Chan, J. R., McKenzie, B. S., Blumenschein, W. M., Mattson, J. D., Basham, B., Smith, K., Chen, T., Morel, F., Lecron, J. C., Kastelein, R. A., Cua, D. J., McClanahan, T. K., Bowman, E. P., de Waal Malefyt, R. ( 2007 ) Development, cytokine profile and function of human interleu kin 17-producing helper T cells. Nat. Immunol. 8, 950 – 957
dc.identifier.citedreferenceHarrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M., Weaver, C. T. ( 2005 ) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123 – 1132
dc.identifier.citedreferenceAcosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A., Sallusto, F. ( 2007 ) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of inter leukin 17-producing human T helper cells. Nat. Immunol. 8, 942 – 949
dc.identifier.citedreferenceDenning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R., Pulendran, B. ( 2007 ) Lamina propria macrophages and den dritic cells differentially induce regulatory and interleukin 17- producing T cell responses. Nat. Immunol. 8, 1086 – 1094
dc.identifier.citedreferenceZhou, L., Ivanov, J.J., Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D. E., Leonard, W. J., Littman, D. R. ( 2007 ) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967 – 974
dc.identifier.citedreferenceMangan, P. R., Harrington, L. E., O’Quinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., Hatton, R. D., Wahl, S. M., Schoeb, T. R., Weaver, C. T. ( 2006 ) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231 234
dc.identifier.citedreferenceBettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L., Kuchroo, V. K. ( 2006 ) Reciprocal develop mental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235 – 238
dc.identifier.citedreferenceAnnunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E., Fili, L., Ferri, S., Frosali, F., Giudici, F., Romagnani, P., Parronchi, P., Tonelli, F., Maggi, E., Romagnani, S. ( 2007 ) Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849 – 1861
dc.identifier.citedreferenceStumhofer, J. S., Laurence, A., Wilson, E. H., Huang, E., Tato, C. M., Johnson, L. M., Villarino, A. V., Huang, Q., Yoshimura, A., Sehy, D., Saris, C. J., O’Shea, J. J., Hennighausen, L., Ernst, M., Hunter, C. A. ( 2006 ) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immu nol. 7, 937 – 945
dc.identifier.citedreferenceBatten, M., Li, J., Yi, S., Kljavin, N. M., Danilenko, D. M., Lucas, S., Lee, J., de Sauvage, F. J., Ghilardi, N. ( 2006 ) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the devel opment of interleukin 17-producing T cells. Nat. Immunol. 7, 929 – 936
dc.identifier.citedreferenceStark, M. A., Huo, Y., Burcin, T. L., Morris, M. A., Olson, T. S., Ley, K. ( 2005 ) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285 – 294
dc.identifier.citedreferenceMatsushima, A., Ogura, H., Fujita, K., Koh, T., Tanaka, H., Sumi, Y., Yoshiya, K., Hosotsubo, H., Kuwagata, Y., Shimazu, T., Sugimoto, H. ( 2004 ) Early activation of gammadelta T lympho cytes in patients with severe systemic inflammatory response syndrome. Shock 22, 11 – 15
dc.identifier.citedreferenceHartupee, J., Liu, C., Novotny, M., Li, X., Hamilton, T. ( 2007 ) IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol. 179, 4135 – 4141
dc.identifier.citedreferenceQian, Y., Liu, C., Hartupee, J., Altuntas, C. Z., Gulen, M. F., Jane-Wit, D., Xiao, J., Lu, Y., Giltiay, N., Liu, J., Kordula, T., Zhang, Q. W., Vallance, B., Swaidani, S., Aronica, M., Tuohy, V. K., Hamilton, T., Li, X. ( 2007 ) The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247 – 256
dc.identifier.citedreferenceHunter, C. A. ( 2007 ) Act1-ivating IL-17 inflammation. Nat. Immunol. 8, 232 – 234
dc.identifier.citedreferenceLinden, A., Laan, M., Anderson, G. P. ( 2005 ) Neutrophils, interleukin-17A and lung disease. Eur. Respir. J. 25, 159 – 172
dc.identifier.citedreferenceDong, C. ( 2006 ) Diversification of T-helper-cell lineages: find ing the family root of IL-17-producing cells. Nat. Rev. Immunol. 6, 329 – 333
dc.identifier.citedreferenceIwakura, Y., Ishigame, H. ( 2006 ) The IL-23/IL-17 axis in inflam mation. J. Clin. Invest. 116, 1218 – 1222
dc.identifier.citedreferenceChung, C. S., Watkins, L., Funches, A., Lomas-Neira, J., Cioffi, W. G., Ayala, A. ( 2006 ) Deficiency of gammadelta T lympho cytes contributes to mortality and immunosuppression in sepsis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1338 – R1343
dc.identifier.citedreferenceHuber-Lang, M. S., Younkin, E. M., Sarma, J. V., McGuire, S. R., Lu, K. T., Guo, R. F., Padgaonkar, V. A., Curnutte, J. T., Erickson, R., Ward, P. A. ( 2002 ) Complement-induced impair ment of innate immunity during sepsis. J. Immunol. 169, 3223 3231
dc.identifier.citedreferenceDombrovskiy, V. Y., Martin, A. A., Sunderram, J., Paz, H. L. ( 2007 ) Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit. CareMed. 35, 1244 – 1250
dc.identifier.citedreferenceKochanek, K. D., Smith, B. L. ( 2004 ) Deaths: preliminary data for 2002. Natl. Vital. Stat. Rep. 52, 1 – 47
dc.identifier.citedreferenceRiedemann, N. C., Guo, R. F., Ward, P. A. ( 2003 ) The enigma of sepsis. J. Clin. Invest. 112, 460 – 467
dc.identifier.citedreferenceWard, P. A. ( 2004 ) The dark side of C5a in sepsis. Nat. Rev. Immunol. 4, 133 – 142
dc.identifier.citedreferenceWang, H., Bloom, O., Zhang, M., Vishnubhakat, J. M., Ombrel lino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., Manogue, K. R., Faist, E., Abraham, E., Andersson, J., Andersson, U., Molina, P. E., Abumrad, N. N., Sama, A., Tracey, K. J. ( 1999 ) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248 – 251
dc.identifier.citedreferenceLotze, M. T., Tracey, K. J. ( 2005 ) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331 – 342
dc.identifier.citedreferenceWeaver, C. T., Hatton, R. D., Mangan, P. R., Harrington, L. E. ( 2007 ) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821 – 852
dc.identifier.citedreferenceKolls, J. K., Linden, A. ( 2004 ) Interleukin-17 family members and inflammation. Immunity 21, 467 – 476
dc.identifier.citedreferenceSchwarzenberger, P., La Russa, V., Miller, A., Ye, P., Huang, W., Zieske, A., Nelson, S., Bagby, G. J., Stoltz, D., Mynatt, R. L., Spriggs, M., Kolls, J. K. ( 1998 ) IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J. Immunol. 161, 6383 – 6389
dc.identifier.citedreferenceYe, P., Rodriguez, F. H., Kanaly, S., Stocking, K. L., Schurr, J., Schwarzenberger, P., Oliver, P., Huang, W., Zhang, P., Zhang, J., Shellito, J. E., Bagby, G.J., Nelson, S., Charrier, K., Peschon, J.J., Kolls, J. K. ( 2001 ) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony- stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519 – 527
dc.identifier.citedreferenceChabaud, M., Fossiez, F., Taupin, J. L., Miossec, P. ( 1998 ) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synovio cytes and its regulation by Th2 cytokines. J. Immunol. 161, 409 – 414
dc.identifier.citedreferenceVan Kooten, C., Boonstra, J. G., Paape, M. E., Fossiez, F., Banchereau, J., Lebecque, S., Bruijn, J. A., De Fijter, J. W., Van Es, L. A., Daha, M. R. ( 1998 ) Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J. Am. Soc. Nephrol. 9, 1526 – 1534
dc.identifier.citedreferenceBenchetrit, F., Ciree, A., Vives, V., Warnier, G., Gey, A., Sautes-Fridman, C., Fossiez, F., Haicheur, N., Fridman, W. H., Tartour, E. ( 2002 ) Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 99, 2114 – 2121
dc.identifier.citedreferenceLinden, A. ( 2001 ) Role of interleukin-17 and the neutrophil in asthma. Int. Arch. Allergy. Immunol. 126, 179 – 184
dc.identifier.citedreferenceShibata, K., Yamada, H., Hara, H., Kishihara, K., Yoshikai, Y. ( 2007 ) Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178, 4466 – 4472
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.