Show simple item record

Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study

dc.contributor.authorPark, Yoon Jeong
dc.contributor.authorChang, Li‐chien
dc.contributor.authorLiang, Jun Feng
dc.contributor.authorMoon, Cheol
dc.contributor.authorChung, Chong‐pyoung
dc.contributor.authorYang, Victor C.
dc.date.accessioned2020-03-17T18:29:52Z
dc.date.available2020-03-17T18:29:52Z
dc.date.issued2005-09
dc.identifier.citationPark, Yoon Jeong; Chang, Li‐chien ; Liang, Jun Feng; Moon, Cheol; Chung, Chong‐pyoung ; Yang, Victor C. (2005). "Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study." The FASEB Journal 19(11): 1555-1557.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154356
dc.description.abstractNaturally derived, nontoxic peptides from protamine by the authors, termed low molecular weight protamines (LMWPs), possess high arginine content and carry significant sequence similarity to that of TAT, by far the most potent protein transduction domain peptide. Therefore, it was hypothesized that these LMWPs would also inherit the similar translocation activity across the cell membrane, which enables any impermeable species to be transduced into the cells. LMWPs were prepared by enzymatic digestion of protamine, examined their capability of transducing an impermeable protein toxin into the tumor cells by chemical conjugation, and determined cytotoxicity of transduced protein toxin (e.g., gelonin) against cancer cell lines and a tumorâ bearing mouse. In vitro results showed that LMWPs could indeed translocate themselves into several mammalian cell lines as efficiently as TAT, thereby transducing impermeable gelonin into the cells by chemical conjugation. In vivo studies further confirmed that LMWP could carry an impermeable gelonin across the tumor mass and subsequently inhibit the tumor growth. In conclusion, the presence of equivalent cell translocation potency, absence of toxicity of peptide itself, and the suitability for lowâ cost production by simple enzymatic digestion could expand the range of clinical applications of LMWPs, including medical imaging and gene/protein therapies.
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.othergene therapy
dc.subject.othermedical imaging
dc.subject.otherLMWP
dc.subject.otherPTD
dc.subject.otherTAT
dc.titleNontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154356/1/fsb2fj042322fje-sup-0125.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154356/2/fsb2fj042322fje.pdf
dc.identifier.doi10.1096/fj.04-2322fje
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceTung, C. H., Mueller, S., and Wessleder, R. ( 2002 ) Novel branching membrane translocational peptide as gene delivery vector. Bioorg. Med. Chem 10, 3609 â 3614
dc.identifier.citedreferenceJosephson, L., Tung, C. H., Moore, A., and Weissleder, R. ( 1999 ) High efficiency intracellular magnetic labeling with novel superparamagneticâ TAT peptide conjugate. Bioconjug. Chem. 10, 186 â 191
dc.identifier.citedreferenceLewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., Scadden, D. T., and Weissleder, R. ( 2000 ) Tatâ peptideâ derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410 â 414
dc.identifier.citedreferenceTorchilin, V. P., Rammohan, R., Weissig, V., and Levchenko, T. ( 2001 ) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA 798, 8786 â 8791
dc.identifier.citedreferenceNiesner, U., Halin, C., Lozzi, L., Gunthert, M., Neri, P., Wunderliâ Allenspach, H., Zardi, L., and Neri, D. ( 2002 ) Quantification of the tumor targeting properties of antibody fragments conjugated to cellâ permeating HIVâ 1 TAT peptides. Bioconjug. Chem. 13, 729 â 736
dc.identifier.citedreferenceFutaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., and Sugiura, Y. ( 2001 ) Arginineâ richpeptides. J. Biol. Chem. 276, 5836 â 5840
dc.identifier.citedreferenceByun, Y., Singh, V. K., and Yang, V. C. ( 1999 ) Low molecular weight protamine: a potential nontoxic heparin antagonist. Thromb. Res. 94, 53 â 61
dc.identifier.citedreferenceChang, L. C., Lee, H. F., Yang, Z. Q., and Yang, V. C. ( 2001 ) Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (I): preparation and characterization. AAPS PharmSci. 3, E17
dc.identifier.citedreferenceChang, L. C., Liang, J. F., Lee, L. M., and Yang, V. C. ( 2001 ) Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (II): in vitro evaluation of efficacy and toxicity. AAPS PharmSci. 3, E18
dc.identifier.citedreferenceLee, L. M., Chang, L. C., Wrobleski, S., Wakefield, T. W., and Yang, V. C. ( 2001 ) Low molecular weight protamine as nontoxic heparin/low molecular weight heparin antidote (III): preliminary in vivo evaluation of efficacy and toxicity using a canine model. AAPS PharmSci. 3, E19
dc.identifier.citedreferenceTsui, B., Singh, V. J., Liang, J. F., and Yang, V. C. ( 2001 ) Reduced crossâ reactivity towards antiâ protamine antibodies of a low molecular weight protamine analogue. Thromb. Res. 101, 417 â 420
dc.identifier.citedreferenceLiang, J. F., Zhen, L., Chang, L. C., and Yang, V. C. ( 2003 ) A less toxic heparin antagonistâ low molecular weight protamine. Biochemistry (Mosc.) 68, 116 â 120
dc.identifier.citedreferencePark, Y. J., Liang, J. F., Ko, K. S., Kim, S. W., and Yang, V. C. ( 2003 ) Low molecular weight protamine as an efficient and nontoxic gene carrier: in vitro study. J. Gene Med. 5, 700 â 711
dc.identifier.citedreferenceCarlsson, J., Drevin, H., and Axen, R. ( 1978 ) Protein thiolation and reversible proteinprotein conjugation. Biochem. J. 173, 723 â 737
dc.identifier.citedreferenceHeeremans, J. L., Kraaijenga, J. J., Los, P., Kluft, C., and Crommelin, D. J. ( 1992 ) Development of a procedure for coupling the homing device gluâ plasminogen to liposomes. Biochim. Biophys. Acta 1117, 258 â 264
dc.identifier.citedreferenceMellman, I. ( 1996 ) Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575 â 625
dc.identifier.citedreferenceMorris, M. C., Depollier, J., Mery, J., Heitz, F., and Divita, G. ( 2001 ) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173 â 1176
dc.identifier.citedreferenceZaro, J. L., and Shen, Wâ C. ( 2003 ) Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochem. Biophys. Res. Commun. 307, 241 â 247
dc.identifier.citedreferenceRothbard, J. B., Kreider, E., VanDeusen, C. L., Wright, L., Wylie, B. L., and Wender, P. A. ( 2002 ) Arginineâ rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J. Med. Chem. 45, 3612 â 3618
dc.identifier.citedreferenceVeenendaal, L. M., Jin, H., Ran, S., Cheung, L., Navone, N., Marks, J. W., Waltenberger, J., Thorpe, P., and Rosenblum, M. G. ( 2002 ) In vitro and in vivo studies of a VEGF 121 /gelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc. Natl. Acad. Sci. USA 99, 7866 â 7871
dc.identifier.citedreferenceSelbo, P. K., Sivam, G., Fodstad, O., Sandvig, K., and Berg, K. ( 2001 ) In vivo documentation of photochemical internalization, a novel approach to siteâ specific cancer therapy. Int. J. Cancer 92, 761 â 766
dc.identifier.citedreferenceRosenblum, M. G., Shawver, L. K., Marks, J. W., Brink, J., Cheung, L., and Langtonâ Webster, B. ( 1999 ) Recombinant immunotoxins directed against the câ erbâ 2/HER2/neu oncogen product: in vitro cytotoxicity, pharmacokinetics and in vivo efficacy studies in xenograft models. Clin. Cancer Res. 5, 865 â 874
dc.identifier.citedreferenceNagahara, H., Voceroâ Akbani, A. M., Snyder, E. L., Ho, A., Latham, D. G., Lissy, N. A., Beckerâ Hapak, M., Ezhevsky, S. A., and Dowdy, S. F. ( 1998 ) Transduction of fullâ length TAT fusion proteins into mammalian cells: TATâ p27Kip1 induces cell migration. Nat. Med. 4, 1449 â 1452
dc.identifier.citedreferenceMcGrath, M. S., Rosenblum, M. G., Philips, M. R., and Scheinberg, D. A. ( 2003 ) Immunotoxin resistance in multidrug resistant cells. Cancer Res. 63, 72 â 79
dc.identifier.citedreferenceWender, P. A., Mitchell, D. J., Pattabiraman, K., Pelkey, E. T., Steinman, L., and Rothbard, J. B. ( 2000 ) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. USA 97, 13003 â 13008
dc.identifier.citedreferenceSuzuki, T., Futaki, S., Niwa, M., Tanaka, S., Ueda, K., and Sugiura, Y. ( 2002 ) Possible existence of common internalization mechanisms among arginineâ rich peptides. J. Biol. Chem. 277, 2437 â 2443
dc.identifier.citedreferenceFawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B., and Barsoum, J. ( 1994 ) TATâ mediated delivery of heterogeneous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664 â 668
dc.identifier.citedreferenceSnyder, E. L., and Dowdy, S. F. ( 2001 ) Protein/peptide transduction domains: potential to deliver large DNA molecules into cells. Curr. Opin. Mol. Ther. 3, 147 â 152
dc.identifier.citedreferenceMann, D. A., and Frankel, A. D. ( 1991 ) Endocytosis and targeting of exogenous HIVâ 1 TAT protein. EMBO J. 10, 1733 â 1739
dc.identifier.citedreferenceJoliot, A. H., Pernelle, C., Deagostiniâ Bazin, H., and Prochiantz, A. ( 1991 ) Antennapediahomeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. USA 88, 1864 â 1870
dc.identifier.citedreferenceElliott, G., and O’Hare, P. ( 1997 ) Intracellular trafficking and protein delivery by a herpes virus structural protein. Cell 88, 223 â 233
dc.identifier.citedreferenceVives, E., Brodin, P., and Lebleu, B. ( 1997 ) A truncated HIVâ 1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010 â 16017
dc.identifier.citedreferenceSchwartz, S. R., Ho, A., Voceroâ Akbani, A., and Dowdy, S. F. ( 1999 ) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569 â 1572
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.