Show simple item record

Protection of innate immunity by C5aR antagonist in septic mice

dc.contributor.authorHuber‐lang, Markus S.
dc.contributor.authorRiedeman, Niels C.
dc.contributor.authorSarma, J. Vidya
dc.contributor.authorYounkin, Ellen M.
dc.contributor.authorMcGuire, Stephanie R.
dc.contributor.authorLaudes, Ines J.
dc.contributor.authorLu, Kristina T.
dc.contributor.authorGuo, Ren‐feng
dc.contributor.authorNeff, Thomas A.
dc.contributor.authorPadgaonkar, Vaishalee A.
dc.contributor.authorLambris, John D.
dc.contributor.authorSpruce, L.
dc.contributor.authorMastellos, D.
dc.contributor.authorZetoune, Firas S.
dc.contributor.authorWard, Peter A.
dc.date.accessioned2020-03-17T18:29:59Z
dc.date.available2020-03-17T18:29:59Z
dc.date.issued2002-10
dc.identifier.citationHuber‐lang, Markus S. ; Riedeman, Niels C.; Sarma, J. Vidya; Younkin, Ellen M.; McGuire, Stephanie R.; Laudes, Ines J.; Lu, Kristina T.; Guo, Ren‐feng ; Neff, Thomas A.; Padgaonkar, Vaishalee A.; Lambris, John D.; Spruce, L.; Mastellos, D.; Zetoune, Firas S.; Ward, Peter A. (2002). "Protection of innate immunity by C5aR antagonist in septic mice." The FASEB Journal 16(12): 1567-1574.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154360
dc.description.abstractInnate immune functions are known to be compromised during sepsis, often with lethal consequences. There is also evidence in rats that sepsis is associated with excessive complement activation and generation of the potent anaphylatoxin C5a. In the presence of a cyclic peptide antagonist (C5aRa) to the C5a receptor (C5aR), the binding of murine 125Iâ C5a to murine neutrophils was reduced, the in vitro chemotactic responses of mouse neutrophils to mouse C5a were markedly diminished, the acquired defect in hydrogen peroxide (H2O2) production of C5aâ exposed neutrophils was reversed, and the lung permeability index (extravascular leakage of albumin) in mice after intrapulmonary deposition of IgG immune complexes was markedly diminished. Mice that developed sepsis after cecal ligation/puncture (CLP) and were treated with C5aRa had greatly improved survival rates. These data suggest that C5aRa interferes with neutrophil responses to C5a, preventing C5aâ induced compromise of innate immunity during sepsis, with greatly improved survival rates after CLP.â Huberâ Lang, M. S., Riedeman, N. C., Sarma, J. V., Younkin, E. M., McGuire, S. R., Laudes, I. J., Lu, K. T., Guo, R.â F., Neff, T. A., Padgaonkar, V. A., Lambris, J. D., Spruce, L., Mastellos, D., Zetoune, F. S., Ward, P. A. Protection of innate immunity by C5aR antagonist in septic mice. FASEB J. 16, 1567â 1574 (2002)
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroxidative burst
dc.subject.othersepsis
dc.subject.otherneutrophil
dc.subject.otherblood clearance
dc.titleProtection of innate immunity by C5aR antagonist in septic mice
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154360/1/fsb2fj020209com.pdf
dc.identifier.doi10.1096/fj.02-0209com
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceShi, F., Ljunggren, H., and Sarvetnick, N. ( 2001 ) Innate immunity and autoimmunity: from selfâ protection to selfâ destruction. Trends Immunol. 22, 97 â 101
dc.identifier.citedreferenceChenoweth, D. E., and Hugli, T. E. ( 1978 ) Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 75, 3943 â 3947
dc.identifier.citedreferenceDrouin, S. M., Kildsgaard, J., Haviland, J., Zabner, J., Jia, H. P., McCray, P. B., Tack, B. F., and Wetsel, R. A. ( 2001 ) Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J. Immunol. 166, 2025 â 2032
dc.identifier.citedreferenceOsaka, H., McGinty, A., Hoepken, U. E., Gerard, C., and Pasinetti, G. M. ( 1999 ) Expression of C5a receptor in mouse brain: role in signal transduction and neurodegeneration. Neuroscience 88, 1073 â 1082
dc.identifier.citedreferenceZwirner, J., Fayyazi, A., and Goetze, O. ( 1999 ) Expression of the anaphylatoxin C5a receptor in nonâ myeloid cells. Mol. Immunol. 36, 877 â 884
dc.identifier.citedreferenceHoepken, U. E., Lu, B., Gerard, N. P., and Gerard, C. ( 1997 ) Impaired inflammatory responses in the reverse Arthus reaction through genetic deletion of the C5a receptor. J. Exp. Med. 185, 749 â 756
dc.identifier.citedreferenceFinch, A. M., Wong, A. K., Paczkowski, N. J., Wadi, S. K., Craik, D. J., Fairlie, D. P., and Taylor, S. M. ( 1999 ) Lowâ molecularweight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J. Med. Chem. 42, 1965 â 1974
dc.identifier.citedreferenceWong, A. K., Finch, A. M., Pierens, G. K., Craik, D. J., Taylor, S. M., and Fairlie, D. P. ( 1998 ) Small molecular probe for Gâ proteinâ coupled C5a receptor conformationally constrained antagonists derived from the Câ terminus of the human plasma protein C5a. J. Med. Chem. 41, 3417 â 3425
dc.identifier.citedreferenceShort, A., Wong, A. K., Finch, A. M., Haaima, G., Shiels, I. A., Fairlie, D. P., and Taylor, S. M. ( 1999 ) Effects of a new C5a receptor antagonist on C5aâ and endotoxinâ induced neutropenia in the rat. Br. J. Pharmacol. 126, 551 â 554
dc.identifier.citedreferenceAjuebor, M. N., Das, A. M., Virag, L., Flower, R. J., Szabo, C., Perretti, M. ( 1999 ) Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous ILâ 10. J. Immunol. 162, 1685 â 1691
dc.identifier.citedreferenceFildes, J., Fisher, S., Sheaff, C. M., Barrett, J. A. ( 1998 ) Effects of short heat exposure on human red and white blood cells. J. Trauma 45, 479 â 484
dc.identifier.citedreferenceBennett, G. L., and Horuk, R. ( 1997 ) Iodination of chemokines for use in receptor binding analysis. Methods Enzymol. 288, 134 â 148
dc.identifier.citedreferenceSharma, S. D., Toth, G., and Hruby, V. J. ( 1991 ) A simple general method for (radio)iodination of a phenylalanine residue in peptides: preparation of [Dâ Pen2,4’â 125Iâ Phe4,Dâ Pen5] enkephalin, a peptide with extraordinary selectivity for δâ opioid receptors. J. Org. Chem. 56, 4981 â 4983
dc.identifier.citedreferenceShort, A. J., Paczkowski, N. J., Vogen, S. M., Sanderson, S. D., and Taylor, S. M. ( 1999 ) Responseâ selective C5a agonists: differential effects on neutropenia and hypotension in the rat. Br. J. Pharmacol. 128, 511 â 514
dc.identifier.citedreferenceLarsen, G. L., Mitchell, B. C., and Henson, P. M. ( 1981 ) The pulmonary response of C5 sufficient and deficient mice to immune complexes. Am. Rev. Respir. Dis. 123, 434 â 439
dc.identifier.citedreferenceMulligan, M. S., Schmid, E., Beckâ Schimmer, B., Till, G. O., Friedl, H. P., Brauer, R. B., Hugli, T. E., Miyasaka, M., Warner, R. L., Johnson, K. J., and Ward, P. A. ( 1996 ) Requirement and role of C5a in acute lung inflammatory injury in rats. J. Clin. Invest. 98, 503 â 512
dc.identifier.citedreferenceProdeus, A. P., Zhou, X., Maurer, M., Galli, S. J., and Carroll, M. C. ( 1997 ) Impaired mast cellâ dependent natural immunity in complement C3â deficient mice. Nature (London) 390, 172 â 175
dc.identifier.citedreferenceGommerman, J. L., Oh, D. Y., Zhou, X., Tedder, T. F., Maurer, M., Galli, S. J., and Carroll, M. C. ( 2000 ) A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: a potential mechanism for mast cell activation. J. Immunol. 165, 6915 â 6921
dc.identifier.citedreferenceKildsgaard, J., Hollmann, T. J., Matthews, K. W., Bian, K., Murad, F., and Wetsel, R. A. ( 2000 ) Cutting edge: targeted disruption of the C3a receptor gene demonstrates a novel protective antiâ inflammatory role for C3a in endotoxinâ shock. J. Immunol. 165, 5406 â 5409
dc.identifier.citedreferenceStrachnan, A. J., Woodruff, T. M., Haaima, G., Fairlie, D. P., and Taylor, S. M. ( 2000 ) A new small molecule C5a receptor antagonist inhibits the reverseâ passive Arthus reaction and endotoxic shock in rats. J. Immunol. 164, 6560 â 6565
dc.identifier.citedreferenceMollison, K. W., Krause, R. A., Fey, T. A., Miller, L., Wiedeman, P. E., Kawai, M., and Lane, B. ( 1992 ) Hexapeptide analogs of C5a anaphylatoxin reveal heterogenous neutrophil agonism/ antagonism. FASEB J. 6, A2058
dc.identifier.citedreferenceDrapeau, G., Brochu, S., Godin, D., Levesque, L., Rioux, F., and Marceau, F. ( 1993 ) Synthetic C5a receptor antagonists. Pharmacology, metabolism and in vivo cardiovascular and hematologic effects. Biochem. Pharmacol. 45, 1289 â 1299
dc.identifier.citedreferenceKonteatis, Z. D., Siciliano, S. J., Van Riper, G., Molineaux, C. J., Pandya, S., Fischer, P., Rosen, H., Mumford, R. A., and Springer, M. S. ( 1994 ) Development of C5a receptor antagonists. Differential loss of functional responses. J. Immunol. 153, 4200 â 4205
dc.identifier.citedreferenceGerard, C., Bao, L., Orozco, O., Pearson, M., Kunz, D., and Gerard, N. P. ( 1992 ) Structural diversity in the extracellular faces of peptidergic Gâ proteinâ coupled receptors. Molecular cloning of the mouse C5a anaphylatoxin receptor. J. Immunol. 149, 2600 â 2606
dc.identifier.citedreferenceWard, P. A. ( 1996 ) Role of complement in lung inflammatory injury. Am. J. Pathol. 149, 1079 â 1086
dc.identifier.citedreferenceBotha, A. J., Moore, F. A., Moore, E. E., Fontes, B., Banerjee, A., and Peterson, V. M. ( 1995 ) Postinjury neutrophil priming and activation states: therapeutic challenges. Shock 3, 157 â 166
dc.identifier.citedreferencePellas, T. C., and Wennogle, L. P. ( 1999 ) C5a receptor antagonists. Curr. Pharm. Des. 5, 737 â 755
dc.identifier.citedreferenceKaneko, Y., Okada, N., Baranyi, L., Azuma, T., and Okada, H. ( 1995 ) Antagonistic peptides against human anaphylatoxin C5a. Immunology. 86, 149 â 154
dc.identifier.citedreferenceTsuji, R. F., Magae, J., Nagai, K., and Yamasaki, M. ( 1992 ) Effects of Lâ 156,602, a C5a receptor antagonist, on mouse experimental models of inflammation. Biosci. Biotechnol. Biochem. 56, 2034 â 2036
dc.identifier.citedreferenceHeller, T., Hennecke, M., Baumann, U., Gessner, J. E., Zu Vilsendorf, A. M., Baensch, M., Boulay, F., Kola, A., Klos, A., Bautsch, W., and Kohl, J. ( 1999 ) Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. J. Immunol. 163, 985 â 994
dc.identifier.citedreferencePellas, T. C., Boyar, W. van Oostrum, J., Wasvary, J., Fryer, L. R., Pastor, G., Sills, M., Braunwalder, A., Yarwood, D. R., Kramer, R., Kimble, E., Hadala, J., Haston, W., Moreiraâ Ludewig, R., Uzielâ Fusi, S., Peters, P., Bill, K., and Wennogle, L. P. ( 1998 ) Novel C5a receptor antagonist regulate neutrophil function in vitro and in vivo. J. Immunol. 160, 5616 â 5621
dc.identifier.citedreferenceRiley, R. D., Sato, H., Zhao, Z. Q., Thourani, V. H., Jordan, J. E., Fernandez, A. X., Ma, X. L., Hite, D. R., Rigel, D. F., Pellas, T. C., Peppard, J., Bill, K. A., Lappe, R. W., and Vitenâ Johannsen, J. ( 2000 ) Recombinant human complement C5a receptor antagonist reduces infarct size after surgical revascularization. J. Thorac. Cardiovasc. Surg. 120, 350 â 358
dc.identifier.citedreferenceNishiura, H., Shibuya, Y., and Yamamoto, Y. ( 1998 ) S19 ribosomal protein crossâ linked dimmer causes monocyteâ predominant infiltration by means of molecular mimicry to complement C5a. Lab. Invest. 78, 1615 â 1623
dc.identifier.citedreferenceGlauser, M. P. ( 2000 ) Pathophysiologic basis of sepsis: considerations for future strategies of intervention. Crit. Care Med. 28, 4 â 8
dc.identifier.citedreferenceFaist, E., Schinkel, C., and Zimmer, S. ( 1996 ) Update on the mechanisms of immune suppression of injury and immune modulation. World J. Surg. 20, 454 â 459
dc.identifier.citedreferenceCzermak, B. J., Sarma, V., Pierson, C. L., Warner, R. L., Huberâ Lang, M., Bless, N. M., Schmal, H., Friedl, H. P., and Ward, P. A. ( 1999 ) Protective effects of C5a blockade in sepsis. Nature Med. 5, 788 â 792
dc.identifier.citedreferenceHuberâ Lang, M., Sarma, V. J., Lu, K. T., McGuire, S. R., Padgaonkar, B. A., Guo, R. F., Younkin, E. M., Kunkel, R. G., Ding, J., Erickson, R., Curnutte, J. T., and Ward, P. A. ( 2001 ) Role of C5a in multiâ organ failure. J. Immunol. 166, 1193 â 1199
dc.identifier.citedreferenceUtoh, J., Utsunomiya, T., Imamura, T., Katsuya, H., Miyauchi, Y., Kambara, T. ( 1989 ) Complement activation and neutrophil dysfunction in burned patients with sepsis. Jpn. J. Surg. 19, 462 â 467
dc.identifier.citedreferenceWilliams, M. A., Cave, C. M., Quaid, G., and Solomkin, J. S. ( 1999 ) Chemokine regulation of neutrophil function in surgical inflammation. Arch. Surg. 134, 1360 â 1366
dc.identifier.citedreferenceMatasukawa, A., Kaplan, M. H., Hogaboam, C. M., Lukacs, N. W., and Kunkel, S. L. ( 2001 ) Pivotal role of signal transducer and activator of transcription (stat)4 and stat6 in the innate immune response during sepsis. J. Exp. Med. 193, 679 â 688
dc.identifier.citedreferenceSolomkin, J. S., Jenkins, M. K., Nelson, R. D., Chenoweth, D., and Simmons, R. L. ( 1981 ) Neutrophil dysfunction in sepsis. II. Evidence for the role of complement activation products in cellular deactivation. Surgery 90, 319 â 327
dc.identifier.citedreferenceGoya, T., Morisaki, T., and Motomichi. T. ( 1994 ) Immunologic assessment of host defense impairment in patients with septic multiple organ failure: relationship between complement activation and changes in neutrophil function. Surgery 115, 145 â 155
dc.identifier.citedreferenceZimmerman, J. J., Shelhamer, J. H., and Parrillo, J. ( 1985 ) Quantitative analysis of polymorphonuclear leukocyte superoxide anion generation in critically ill children. Crit. Care Med. 13, 143 â 150
dc.identifier.citedreferenceHecke, F., Schmidt, U., Kola, A., Bautsch, W., Klos, A., and Kohl, J. ( 1997 ) Circulating complement proteins in multiple trauma patientsâ correlation with injury severity, development of sepsis, and outcome. Crit. Care Med. 25, 2015 â 2024
dc.identifier.citedreferenceBurg, N. D., and Phillinger, M. H. ( 2001 ) The neutrophil: function and regulation in innate and humoral immunity. Clin. Immunol. 99, 7 â 17
dc.identifier.citedreferenceKoch, T., Annus, C., Schiefer, H. G., van Ackern, K., and Neuhof, H. ( 1997 ) Impaired bacterial clearance after activation of the complement and coagulation systems. Shock 7, 42 â 48
dc.identifier.citedreferenceEmber, J. A., and Hugli, T. E. ( 1997 ) Complement factors and their receptors. Immunopharmacology 378, 3 â 15
dc.identifier.citedreferenceMiller, C. G., Cook, D. N., and Kotwal, G. J. ( 1996 ) Two chemotactic factors, C5a and MIPâ 1alpha, dramatically alter the mortality from zymosanâ induced multiple organ dysfunction syndrome (MODS): C5a contributes to MODS while MIPâ 1alpha has a protective role. Mol. Immunol. 33, 1125 â 1127
dc.identifier.citedreferenceBarton, P., and Warren, J. S. ( 1993 ) Complement component C5 modulates the systemic tumor necrosis factor response in murine endotoxic shock. Infect. Immun. 61, 1474 â 1481
dc.identifier.citedreferenceDeitch, E. A. ( 1998 ) Animal models of sepsis and shock: a review and lessons learned. Shock 9, 1 â 11
dc.identifier.citedreferenceWichterman, K. A., Baue, A. E., and Chaudry, I. H. ( 1980 ) Sepsis and septic shockâ a review of laboratory models and a proposal. J. Surg. Res. 29, 189 â 201
dc.identifier.citedreferenceHuberâ Lang, M. S., J. Vidya, S., McGuire, S. R., Lu, K. T., Guo, R. F., Padgaonkar, V. A., Younkin, E. M., Laudes, I. J., Riedemann, N. C., Younger, J. G., and Ward, P. A. ( 2001 ) Protective effects of antiâ C5a peptide antibodies in experimental sepsis. FASEB J. 15, 568 â 570
dc.identifier.citedreferenceGerard, N. P., and Gerard, C. ( 1991 ) The chemotactic receptor for human C5a anaphylatoxin. Nature (London) 349, 614 â 617
dc.identifier.citedreferenceFureder, W., Agis, H., Willheim, M., Bankl, H. C., Maier, U., Kishi, K., Muller, M. R., Czerwenka, K., Radaszkiewicz, T., and Butterfield, J. H. ( 1995 ) Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J. Immunol. 155, 152 â 160
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.