Show simple item record

Complementâ induced activation of the cardiac NLRP3 inflammasome in sepsis

dc.contributor.authorKalbitz, Miriam
dc.contributor.authorFattahi, Fatemeh
dc.contributor.authorGrailer, Jamison J.
dc.contributor.authorJajou, Lawrence
dc.contributor.authorMalan, Elizabeth A.
dc.contributor.authorZetoune, Firas S.
dc.contributor.authorHuber‐lang, Markus
dc.contributor.authorRussell, Mark W.
dc.contributor.authorWard, Peter A.
dc.date.accessioned2020-03-17T18:30:02Z
dc.date.available2020-03-17T18:30:02Z
dc.date.issued2016-12
dc.identifier.citationKalbitz, Miriam; Fattahi, Fatemeh; Grailer, Jamison J.; Jajou, Lawrence; Malan, Elizabeth A.; Zetoune, Firas S.; Huber‐lang, Markus ; Russell, Mark W.; Ward, Peter A. (2016). "Complementâ induced activation of the cardiac NLRP3 inflammasome in sepsis." The FASEB Journal 30(12): 3997-4006.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154362
dc.description.abstractCardiac dysfunction develops during sepsis in humans and rodents. In the model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), we investigated the role of the NLRP3 inflammasome in the heart. Mouse heart homogenates from shamâ procedure mice contained high mRNA levels of NLRP3 and ILâ 1β. Usingthe inflamm a some protocol, exposure of cardiomyocytes (CMs) to LPS followed by ATP or nigericin caused release of mature ILâ 1β. Immuno staining of left ventricular frozen sections before and 8 h after CLP revealed the presence of NLRP3 and ILâ 1β proteins inCMs. CLP caused substantial increases in mRNAs for ILâ 1β and NLRP3 in CMs which are reduced in the absence of either C5aR1 or C5aR2. After CLP, NLRP32/2 mice showed reduced plasma levels of ILâ 1βand ILâ 6. In vitro exposure of wildâ type CMs to recombinant C5a (rC5a) cause delevations in both cytosolic and nuclear/mitochondrial reactive oxygen species (ROS), which were C5aâ receptor dependent. Use of a selective NOX2 inhibitor prevented increased cytosolic and nuclear/mitochondrial ROS levels and release of ILâ 1β. Finally, NLRP32/2 mice had reduced defects in echo/Doppler parameters in heart afterCLP. These studies establish that the NLRP3 inflammasome contributes to the cardiomyopathy of polymicrobial sepsis.â Kalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huberâ Lang, M., Russell, M. W., Ward, P. A. Complementâ induced activation of the cardiac NLRP3 inflammasome in sepsis. FASEB J. 30, 3997â 4006 (2016). www.fasebj.org
dc.publisherWiley Periodicals, Inc.
dc.publisherFederation of American Societies for Experimental Biology
dc.subject.otherC5a
dc.subject.otherCLP
dc.subject.otherILâ 1β
dc.subject.otherC5a receptors
dc.titleComplementâ induced activation of the cardiac NLRP3 inflammasome in sepsis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154362/1/fsb2fasebj30120728r.pdf
dc.identifier.doi10.1096/fj.201600728R
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferencePelegrin, P., and Surprenant, A. ( 2006 ) Pannexinâ 1 mediates large pore formation and interleukinâ 1βeta release by the ATPâ gated P2à 7 receptor. EMBO J. 25, 5071 â 5082
dc.identifier.citedreferenceHöpken, U. E., Lu, B., Gerard, N. P., and Gerard, C. ( 1996 ) The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383, 86 â 89
dc.identifier.citedreferenceGerard, N. P., Lu, B., Liu, P., Craig, S., Fujiwara, Y., Okinaga, S., and Gerard, C. ( 2005 ) Anantiâ inflammatory function for the complement anaphylatoxin C5aâ binding protein, C5L2. J. Biol. Chem. 280, 39677â 39680
dc.identifier.citedreferenceBaker, C. C., Chaudry, I. H., Gaines, H. O., and Baue, A. E. ( 1983 ) Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94, 331 â 335
dc.identifier.citedreferenceRittirsch, D., Huberâ Lang, M.S., Flierl, M.A., and Ward, P. A. ( 2009 ) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31 â 36
dc.identifier.citedreferenceHuberâ Lang, M., Sarma, V. J., Lu, K. T., McGuire, S. R., Padgaonkar, V. A., Guo, R. F., Younkin, E. M., Kunkel, R. G., Ding, J., Erickson, R., Curnutte, J. T., and Ward, P. A. ( 2001 ) Role of C5a in multiorgan failure during sepsis. J. Immunol. 166, 1193 â 1199
dc.identifier.citedreferenceBoluyt, M. O., Converso, K., Hwang, H. S., Mikkor, A., and Russell, M. W. ( 2004 ) Echocardiographic assessment of ageâ associated changes in systolic and diastolic function of the female F344 rat heart. J. Appl. Physiol. 96, 822 â 828
dc.identifier.citedreferenceWang, Y., Gao, B., and Xiong, S. ( 2014 ) Involvement of NLRP3 inflammasome in CVB3â induced viral myocarditis. Am. J. Physiol. Heart Circ. Physiol. 307, H1438 â H1447
dc.identifier.citedreferenceBoyd, J. H., Mathur, S., Wang, Y., Bateman, R. M., and Walley, K. R. ( 2006 ) Tollâ like receptor stimulation in cardiomyoctes decreases contractility and initiates an NFâ kappaB dependent inflammatory response. Cardiovasc. Res. 72, 384 â 393
dc.identifier.citedreferenceZhang, W., Xu, X., Kao, R., Mele, T., Kvietys, P., Martin, C.M., and Rui, T. ( 2014 ) Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation. PLoS One 9, e107639
dc.identifier.citedreferenceLacroixâ Lamandé, S., d’Andon, M. F., Michel, E., Ratet, G., Philpott, D. J., Girardin, S. E., Boneca, I. G., Vandewalle, A., and Werts, C. ( 2012 ) Downregulation of the Na/Kâ ATPase pump by leptospiral glycolipoprotein activates the NLRP3 inflammasome. J. Immunol. 188, 2805 â 2814
dc.identifier.citedreferenceWitzenrath, M., Pache, F., Lorenz, D., Koppe, U., Gutbier, B., Tabeling, C., Reppe, K., Meixenberger, K., Dorhoi, A., Ma, J., Holmes, A., Trendelenburg, G., Heimesaat, M. M., Bereswill, S., van der Linden, M., Tschopp, J., Mitchell, T. J., Suttorp, N., and Opitz, B. ( 2011 ) The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J. Immunol. 187, 434 â 440
dc.identifier.citedreferenceNetea, M. G., Noldâ Petry, C. A., Nold, M. F., Joosten, L. A., Opitz, B., van der Meer, J.H., van de Veerdonk, F.L., Ferwerda, G., Heinhuis, B., Devesa, I., Funk, C. J., Mason, R. J., Kullberg, B. J., Rubartelli, A., van der Meer, J.W., and Dinarello, C. A. ( 2009 ) Differentialrequirement for the activation of the inflammasome for processing and release of ILâ 1βeta in monocytes and macrophages. Blood 113, 2324 â 2335
dc.identifier.citedreferenceTriantafilou, K., Hughes, T. R., Triantafilou, M., and Morgan, B. P. ( 2013 ) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J. Cell Sci. 126, 2903 â 2913
dc.identifier.citedreferenceSamstad, E. O., Niyonzima, N., Nymo, S., Aune, M. H., Ryan, L., Bakke, S. S., LappegÃ¥rd, K.T., Brekke, O. L., Lambris, J. D., DamÃ¥s., Mollnes, T. E., and Espevik, T. ( 2014 ) Cholesterol crystals induce complementâ dependent inflammasome activation and cytokine release. J. Immunol. 192, 2837 â 2845
dc.identifier.citedreferenceAsgari, E., Le Friec, G., Yamamoto, H., Perucha, E., Sacks, S. S., Köhl, J., Cook, H. T., and Kemper, C. ( 2013 ) C3a modulates ILâ 1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 122, 3473 â 3481
dc.identifier.citedreferenceSandanger, à ., Ranheim, T., Vinge, L. E., Bliksøen, M., Alfsnes, K., Finsen, A.V., Dahl, C.P., Askevold, E. T., Florholmen, G., Christensen, G., Fitzgerald, K. A., Lien, E., Valen, G., Espevik, T., Aukrust, P., and Yndestad, A. ( 2013 ) The NLRP3 inflammasome is upâ regulated in cardiac fibroblasts and mediates myocardial ischaemiaâ reperfusion injury. Cardiovasc. Res. 99, 164 â 174
dc.identifier.citedreferenceBae, J. Y., and Park, H. H. ( 2011 ) Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J. Biol. Chem. 286, 39528â 39536
dc.identifier.citedreferenceDikalov, S. ( 2011 ) Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51, 1289 â 1301
dc.identifier.citedreferenceCave, A., Grieve, D., Johar, S., Zhang, M., and Shah, A. M. ( 2005 ) NADPH oxidaseâ derived reactive oxygen species in cardiac pathophysiology. Philos. Trans. R. Soc. Lond. BBiol. Sci. 360, 2327 â 2334
dc.identifier.citedreferenceHingtgen, S. D., Tian, X., Yang, J., Dunlay, S. M., Peek, A. S., Wu, Y., Sharma, R. V., Engelhardt, J. F., and Davisson, R. L. ( 2006 ) Nox2containing NADPH oxidase and Akt activation play a key role in angiotensin IIâ induced cardiomyocyte hypertrophy. Physiol. Genomics 26, 180 â 191
dc.identifier.citedreferenceBracey, N. A., Gershkovich, B., Chun, J., Vilaysane, A., Meijndert, H. C., Wright, J. R., Jr., Fedak, P. W., Beck, P. L., Muruve, D. A., and Duff, H. J. ( 2014 ) Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J. Biol. Chem. 289, 19571â 19584
dc.identifier.citedreferenceBulua, A. C., Simon, A., Maddipati, R., Pelletier, M., Park, H., Kim, K. Y., Sack, M. N., Kastner, D. L., and Siegel, R. M. ( 2011 ) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1â associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519 â 533
dc.identifier.citedreferenceZhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. ( 2011 ) A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221 â 225
dc.identifier.citedreferenceSadek, H. A., Szweda, P. A., and Szweda, L. I. ( 2004 ) Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition. Biochemistry 43, 8494 â 8502
dc.identifier.citedreferenceFato, R., Bergamini, C., Bortolus, M., Maniero, A. L., Leoni, S., Ohnishi, T., and Lenaz, G. ( 2009 ) Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochim. Biophys. Acta 1787, 384 â 392
dc.identifier.citedreferenceKhan, S. A., Nanduri, J., Yuan, G., Kinsman, B., Kumar, G. K., Joseph, J., Kalyanaraman, B., and Prabhakar, N. R. ( 2011 ) NADPH oxidase 2 mediates intermittent hypoxiaâ induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid. Redox Signal. 14, 533 â 542
dc.identifier.citedreferenceCruz, C. M., Rinna, A., Forman, H.J., Ventura, A. L., Persechini, P. M., and Ojcius, D. M. ( 2007 ) ATP activates a reactive oxygen speciesâ dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem. 282, 2871 â 2879
dc.identifier.citedreferenceFranchi, L., Eigenbrod, T., Muñozâ Planillo, R., and Nuñez, G. ( 2009 ) The inflammasome: a caspaseâ 1â activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241 â 247
dc.identifier.citedreferenceStutz, A., Golenbock, D. T., and Latz, E. ( 2009 ) Inflammasomes: too big to miss. J. Clin. Invest. 119, 3502 â 3511
dc.identifier.citedreferenceKalbitz, M., Grailer, J. J., Fattahi, F., Jajou, L., Herron, T. J., Campbell, K. F., Zetoune, F.S., Bosmann, M., Sarma, J. V., Huberâ Lang, M., Gebhard, F., Loaiza, R., Valdivia, H. H., Jalife, J., Russell, M. W., and Ward, P. A. ( 2015 ) Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J. 29, 2185 â 2193
dc.identifier.citedreferenceMartinon, F., Pétrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. ( 2006 ) Goutâ associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237 â 241
dc.identifier.citedreferenceDuewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., Abela, G. S., Franchi, L., Nuñez, G., Schnurr, M., Espevik, T., Lien, E., Fitzgerald, K. A., Rock, K. L., Moore, K.J., Wright, S. D., Hornung, V., and Latz, E. ( 2010 ) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357 â 1361
dc.identifier.citedreferenceXiang, M., Shi, X., Li, Y., Xu, J., Yin, L., Xiao, G., Scott, M.J., Billiar, T. R., Wilson, M. A., and Fan, J. ( 2011 ) Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J. Immunol. 187, 4809 â 4817
dc.identifier.citedreferenceMuñozâ Planillo, R., Franchi, L., Miller, L. S., and Náuñez, G. ( 2009 ) A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureusâ induced activation of the Nlrp3 inflammasome. J. Immunol. 183, 3942 â 3948
dc.identifier.citedreferenceKim, S., Bauernfeind, F., Ablasser, A., Hartmann, G., Fitzgerald, K. A., Latz, E., and Hornung, V. ( 2010 ) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur. J. Immunol. 40, 1545 â 1551
dc.identifier.citedreferenceMariathasan, S., Weiss, D. S., Newton, K., McBride, J., O’Rourke, K., Rooseâ Girma, M., Lee, W. P., Weinrauch, Y., Monack, D. M., and Dixit, V. M. ( 2006 ) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228 â 232
dc.identifier.citedreferenceMezzaroma, E., Toldo, S., Farkas, D., Seropian, I. M., Van Tassell, B. W., Salloum, F.N., Kannan, H. R., Menna, A.C., Voelkel, N. F., and Abbate, A. ( 2011 ) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl. Acad. Sci. USA 108, 19725â 19730
dc.identifier.citedreferenceKawaguchi, M., Takahashi, M., Hata, T., Kashima, Y., Usui, F., Morimoto, H., Izawa, A., Takahashi, Y., Masumoto, J., Koyama, J., Hongo, M., Noda, T., Nakayama, J., Sagara, J., Taniguchi, S., and Ikeda, U. ( 2011 ) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594 â 604
dc.identifier.citedreferencePomerantz, B.J., Reznikov, L.L., Harken, A.H., and Dinarello, C.A. ( 2001 ) Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of ILâ 18 and ILâ 1βeta. Proc. Natl. Acad. Sci. USA 98, 2871 â 2876
dc.identifier.citedreferenceBracey, N. A., Beck, P. L., Muruve, D. A., Hirota, S. A., Guo, J., Jabagi, H., Wright, J. R., Jr., Macdonald, J. A., Leesâ Miller, J. P., Roach, D., Semeniuk, L. M., and Duff, H. J. ( 2013 ) The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukinâ 1β. Exp. Physiol. 98, 462 â 472
dc.identifier.citedreferenceHwang, M.W., Matsumori, A., Furukawa, Y., Ono, K., Okada, M., Iwasaki, A., Hara, M., Miyamoto, T., Touma, M., and Sasayama, S. ( 2001 ) Neutralization of interleukinâ 1βeta in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J. Am. Coll. Cardiol. 38, 1546 â 1553
dc.identifier.citedreferenceSuzuki, K., Murtuza, B., Smolenski, R. T., Sammut, I. A., Suzuki, N., Kaneda, Y., and Yacoub, M. H. ( 2001 ) Overexpression of interleukinâ 1 receptor antagonist provides cardioprotection against ischemiareperfusion injury associated with reduction in apoptosis. Circulation 104 ( Suppl. 1 ), I308 â I313
dc.identifier.citedreferenceAbbate, A., Van Tassell, B. W., Seropian, I. M., Toldo, S., Robati, R., Varma, A., Salloum, F.N., Smithson, L., and Dinarello, C.A. ( 2010 ) Interleukinâ 1βeta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur. J. Heart Fail. 12, 319 â 322
dc.identifier.citedreferenceMaass, D. L., White, J., and Horton, J. W. ( 2002 ) ILâ 1βeta and ILâ 6 act synergistically with TNFâ alpha to alter cardiac contractile function after burn trauma. Shock 18, 360 â 366
dc.identifier.citedreferenceAtefi, G., Zetoune, F. S., Herron, T. J., Jalife, J., Bosmann, M., Alâ Aref, R., Sarma, J. V., and Ward, P. A. ( 2011 ) Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB J. 25, 2500 â 2508
dc.identifier.citedreferenceLaudisi, F., Spreafico, R., Evrard, M., Hughes, T. R., Mandriani, B., Kandasamy, M., Morgan, B. P., Sivasankar, B., and Mortellaro, A. ( 2013 ) Cutting edge: the NLRP3 inflammasome links complementâ mediated inflammation and ILâ 1β release. J. Immunol. 191, 1006 â 1010
dc.identifier.citedreferenceBrandstetter, C., Holz, F. G., and Krohne, T. U. ( 2015 ) Complement component C5a primes retinal pigment epithelial cells for inflammasome activation by lipofuscinâ mediated photooxidative damage. J. Biol. Chem. 290, 31189â 31198
dc.identifier.citedreferenceWard, P. A., Guo, R. F., and Riedemann, N. C. ( 2012 ) Manipulation of the complement system for benefit in sepsis. Crit. Care Res. Pract. 2012, 427607
dc.identifier.citedreferenceGoldhaber, J. I., Kim, K. H., Natterson, P. D., Lawrence, T., Yang, P., and Weiss, J. N. ( 1996 ) Effects of TNFâ alpha on [Ca2+]i and contractility in isolated adult rabbit ventricular myocytes. Am. J. Physiol. 271, H1449 â H1455
dc.identifier.citedreferenceNiederbichler, A.D., Hoesel, L.M., Westfall, M.V., Gao, H., Ipaktchi, K. R., Sun, L., Zetoune, F. S., Su, G. L., Arbabi, S., Sarma, J. V., Wang, S. C., Hemmila, M. R., and Ward, P. A. ( 2006 ) An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J. Exp. Med. 203, 53 â 61
dc.identifier.citedreferenceRittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huberâ Lang, M., Mackay, C.R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Köhl, J., Gerard, C., Sarma, J. V., and Ward, P. A. ( 2008 ) Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551 â 557
dc.identifier.citedreferenceHoesel, L. M., Niederbichler, A.D., Schaefer, J., Ipaktchi, K.R., Gao, H., Rittirsch, D., Pianko, M. J., Vogt, P. M., Sarma, J. V., Su, G. L., Arbabi, S., Westfall, M. V., Wang, S. C., Hemmila, M. R., and Ward, P. A. ( 2007 ) C5aâ blockade improves burnâ induced cardiac dysfunction. J. Immunol. 178, 7902 â 7910
dc.identifier.citedreferenceKalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huberâ Lang, M., Russell, M. W., and Ward, P. A. ( 2016 ) Complement destabilizes cardiomyocyte function in vivo after polymicrobial sepsis and in vitro. [Eâ pub ahead of print] J. Immunol. doi:10.4049/jimmunol.1600091
dc.identifier.citedreferenceKaestner, L., Scholz, A., Hammer, K., Vecerdea, A., Ruppenthal, S., and Lipp, P. ( 2009 ) Isolation and genetic manipulation of adult cardiac myocytes for confocal imaging. J. Vis. Exp. 31, 1433
dc.identifier.citedreferenceLouch, W. E., Sheehan, K. A., and Wolska, B. M. ( 2011 ) Methods in cardiomyocyte isolation, culture, and gene transfer. J. Mol. Cell. Cardiol. 51, 288 â 298
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.