Show simple item record

Resident alveolar macrophageâ derived vesicular SOCS3 dampens allergic airway inflammation

dc.contributor.authorDraijer, Christina
dc.contributor.authorSpeth, Jennifer M.
dc.contributor.authorPenke, Loka R. K.
dc.contributor.authorZaslona, Zbigniew
dc.contributor.authorBazzill, Joseph D.
dc.contributor.authorLugogo, Njira
dc.contributor.authorHuang, Yvonne J.
dc.contributor.authorMoon, James J.
dc.contributor.authorPeters‐golden, Marc
dc.date.accessioned2020-03-17T18:30:36Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:30:36Z
dc.date.issued2020-03
dc.identifier.citationDraijer, Christina; Speth, Jennifer M.; Penke, Loka R. K.; Zaslona, Zbigniew; Bazzill, Joseph D.; Lugogo, Njira; Huang, Yvonne J.; Moon, James J.; Peters‐golden, Marc (2020). "Resident alveolar macrophageâ derived vesicular SOCS3 dampens allergic airway inflammation." The FASEB Journal 34(3): 4718-4731.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154378
dc.description.abstractResident alveolar macrophages (AMs) suppress allergic inflammation in murine asthma models. Previously we reported that resident AMs can blunt inflammatory signaling in alveolar epithelial cells (ECs) by transcellular delivery of suppressor of cytokine signaling 3 (SOCS3) within extracellular vesicles (EVs). Here we examined the role of vesicular SOCS3 secretion as a mechanism by which AMs restrain allergic inflammatory responses in airway ECs. Bronchoalveolar lavage fluid (BALF) levels of SOCS3 were reduced in asthmatics and in allergenâ challenged mice. Ex vivo SOCS3 secretion was reduced in AMs from challenged mice and this defect was mimicked by exposing normal AMs to cytokines associated with allergic inflammation. Both AMâ derived EVs and synthetic SOCS3 liposomes inhibited the activation of STAT3 and STAT6 as well as cytokine gene expression in ECs challenged with ILâ 4/ILâ 13 and house dust mite (HDM) extract. This suppressive effect of EVs was lost when they were obtained from AMs exposed to allergic inflammationâ associated cytokines. Finally, inflammatory cell recruitment and cytokine generation in the lungs of OVAâ challenged mice were attenuated by intrapulmonary pretreatment with SOCS3 liposomes. Overall, AM secretion of SOCS3 within EVs serves as a brake on airway EC responses during allergic inflammation, but is impaired in asthma. Synthetic liposomes encapsulating SOCS3 can rescue this defect and may serve as a framework for novel therapeutic approaches targeting airway inflammation.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersuppressor of cytokine signaling 3
dc.subject.otherallergic airway inflammation
dc.subject.otherextracellular vesicles
dc.subject.otherepithelial cells
dc.subject.otherliposomes
dc.subject.otheralveolar macrophages
dc.titleResident alveolar macrophageâ derived vesicular SOCS3 dampens allergic airway inflammation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/1/fsb220322-sup-0001-FigS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/2/fsb220322.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/3/fsb220322_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/4/fsb220322-sup-0005-TableS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/5/fsb220322-sup-0003-FigS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/6/fsb220322-sup-0004-FigS4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154378/7/fsb220322-sup-0002-FigS2.pdf
dc.identifier.doi10.1096/fj.201903089R
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceZaslona Z, Okunishi K, Bourdonnay E, et al. Prostaglandin E(2) suppresses allergic sensitization and lung inflammation by targeting the E prostanoid 2 receptor on T cells. J Allergy Clin Immunol. 2014; 133: 379 â 387.
dc.identifier.citedreferenceSpeth JM, Bourdonnay E, Penke LR, et al. Alveolar epithelial cellâ derived prostaglandin E2 serves as a request signal for macrophage secretion of suppressor of cytokine signaling 3 during innate inflammation. J Immunol. 2016; 196: 5112 â 5120.
dc.identifier.citedreferenceYoshimura A, Ito M, Chikuma S, Akanuma T, Nakatsukasa H. Negative regulation of cytokine signaling in immunity. Cold Spring Harb Perspect Biol. 2018; 10.
dc.identifier.citedreferenceSchneider DJ, Speth JM, Penke LR, Wettlaufer SH, Swanson JA, Petersâ Golden M. Mechanisms and modulation of microvesicle uptake in a model of alveolar cell communication. J Biol Chem. 2017; 292: 20897 â 20910.
dc.identifier.citedreferenceBanerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAKâ STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017; 77: 521 â 546.
dc.identifier.citedreferenceAshino S, Takeda K, Li H, et al. Janus kinase 1/3 signaling pathways are key initiators of TH2 differentiation and lung allergic responses. J Allergy Clin Immunol. 2014; 133: 1162 â 1174.
dc.identifier.citedreferenceMatsunaga Y, Inoue H, Fukuyama S, et al. Effects of a Janus kinase inhibitor, pyridone 6, on airway responses in a murine model of asthma. Biochem Biophys Res Commun. 2011; 404: 261 â 267.
dc.identifier.citedreferenceVale K. Targeting the JAKâ STAT pathway in the treatment of â Th2â highâ severe asthma. Future Med Chem. 2016; 8: 405 â 419.
dc.identifier.citedreferenceCalbet M, Ramis I, Calama E, et al. Novel inhaled Panâ JAK inhibitor, LAS194046, reduces allergenâ induced airway inflammation, late asthmatic response, and pSTAT activation in brown norway rats. J Pharmacol Exp Ther. 2019; 370: 137 â 147.
dc.identifier.citedreferenceLi RF, Wang GF. JAK/STAT5 signaling pathway inhibitor ruxolitinib reduces airway inflammation of neutrophilic asthma in mice model. Eur Rev Med Pharmacol Sci. 2018; 22: 835 â 843.
dc.identifier.citedreferenceKubo M, Inoue H. Suppressor of cytokine signaling 3 (SOCS3) in Th2 cells evokes Th2 cytokines, IgE, and eosinophilia. Curr Allergy Asthma Rep. 2006; 6: 32 â 39.
dc.identifier.citedreferenceZafra MP, Canas JA, Mazzeo C, et al. SOCS3 silencing attenuates eosinophil functions in asthma patients. Int J Mol Sci. 2015; 16: 5434 â 5451.
dc.identifier.citedreferencede Oliveira JR, Favarin DC, Tanaka SC, et al. ATâ RvD1 modulates CCLâ 2 and CXCLâ 8 production and NFâ kappaB, STATâ 6, SOCS1, and SOCS3 expression on bronchial epithelial cells stimulated with ILâ 4. Biomed Res Int. 2015; 2015: 178369.
dc.identifier.citedreferenceNasreen N, Khodayari N, Sukkaâ Ganesh B, Peruvemba S, Mohammed KA. Fluticasone propionate and Salmeterol combination induces SOCSâ 3 expression in airway epithelial cells. Int Immunopharmacol. 2012; 12: 217 â 225.
dc.identifier.citedreferenceLambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012; 18: 684 â 692.
dc.identifier.citedreferenceHolgate ST. The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev. 2011; 242: 205 â 219.
dc.identifier.citedreferenceMbawuike IN, Herscowitz HB. MHâ S, a murine alveolar macrophage cell line: morphological, cytochemical, and functional characteristics. J Leukoc Biol. 1989; 46: 119 â 127.
dc.identifier.citedreferenceZhou H, Imrich A, Kobzik L. Characterization of immortalized MARCO and SRâ AI/IIâ deficient murine alveolar macrophage cell lines. Part Fibre Toxicol. 2008; 5: 7.
dc.identifier.citedreferenceSpinelli C, Montermini L, Meehan B, et al. Molecular subtypes and differentiation programmes of glioma stem cells as determinants of extracellular vesicle profiles and endothelial cellâ stimulating activities. J Extracell Vesicles. 2018; 7: 1490144.
dc.identifier.citedreferenceSpeth JM, Penke LR, Bazzill JD, et al. Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics. JCI Insight. 2019; 4.
dc.identifier.citedreferenceFricker M, Gibson PG. Macrophage dysfunction in the pathogenesis and treatment of asthma. Eur Respir J. 2017; 50.
dc.identifier.citedreferenceSalama N, Elâ Sawy M. Isolated low follicle stimulating hormone (FSH) in infertile males â a preliminary report. Arch Ital Urol Androl. 2013; 85: 118 â 124.
dc.identifier.citedreferenceDraijer C, Robbe P, Boorsma CE, Hylkema MN, Melgert BN. Characterization of macrophage phenotypes in three murine models of houseâ dustâ miteâ induced asthma. Mediators Inflamm. 2013; 2013: 632049.
dc.identifier.citedreferenceMelgert BN, Postma DS, Kuipers I, et al. Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy. 2005; 35: 1496 â 1503.
dc.identifier.citedreferenceSampath D, Castro M, Look DC, Holtzman MJ. Constitutive activation of an epithelial signal transducer and activator of transcription (STAT) pathway in asthma. J Clin Invest. 1999; 103: 1353 â 1361.
dc.identifier.citedreferenceSimeoneâ Penney MC, Severgnini M, Tu P, et al. Airway epithelial STAT3 is required for allergic inflammation in a murine model of asthma. J Immunol. 2007; 178: 6191 â 6199.
dc.identifier.citedreferenceKaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to ILâ 4 and for development of Th2 cells. Immunity. 1996; 4: 313 â 319.
dc.identifier.citedreferenceMelgert BN, Oriss TB, Qi Z, et al. Macrophages: regulators of sex differences in asthma? Am J Respir Cell Mol Biol. 2010; 42: 595 â 603.
dc.identifier.citedreferenceChung S, Lee TJ, Reader BF, et al. FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype. Oncotarget. 2016; 7: 17532 â 17546.
dc.identifier.citedreferenceGalli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008; 454: 445 â 454.
dc.identifier.citedreferenceThepen T, Kraal G, Holt PG. The role of alveolar macrophages in regulation of lung inflammation. Ann NY Acad Sci. 1994; 725: 200 â 206.
dc.identifier.citedreferenceHussell T, Bell TJ. Alveolar macrophages: plasticity in a tissueâ specific context. Nat Rev Immunol. 2014; 14: 81 â 93.
dc.identifier.citedreferencePetersâ Golden M. The alveolar macrophage: the forgotten cell in asthma. Am J Respir Cell Mol Biol. 2004; 31: 3 â 7.
dc.identifier.citedreferenceZaslona Z, Przybranowski S, Wilke C, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014; 193: 4245 â 4253.
dc.identifier.citedreferenceCareau E, Bissonnette EY. Adoptive transfer of alveolar macrophages abrogates bronchial hyperresponsiveness. Am J Respir Cell Mol Biol. 2004; 31: 22 â 27.
dc.identifier.citedreferenceHolt PG, Oliver J, Bilyk N, et al. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med. 1993; 177: 397 â 407.
dc.identifier.citedreferenceLee YG, Jeong JJ, Nyenhuis S, et al. Recruited alveolar macrophages, in response to airway epithelialâ derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma. Am J Respir Cell Mol Biol. 2015; 52: 772 â 784.
dc.identifier.citedreferenceDraijer C, Petersâ Golden M. Alveolar macrophages in allergic asthma: the forgotten cell awakes. Curr Allergy Asthma Rep. 2017; 17: 12.
dc.identifier.citedreferenceWestphalen K, Gusarova GA, Islam MN, et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature. 2014; 506: 503 â 506.
dc.identifier.citedreferenceHyde DM, Tyler NK, Putney LF, Singh P, Gundersen HJ. Total number and mean size of alveoli in mammalian lung estimated using fractionator sampling and unbiased estimates of the Euler characteristic of alveolar openings. Anat Rec A Discovery Mol Cell Evol Biol. 2004; 277: 216 â 226.
dc.identifier.citedreferenceColombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30: 255 â 289.
dc.identifier.citedreferenceBourdonnay E, Zaslona Z, Penke LR, et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling. J Exp Med. 2015; 212: 729 â 742.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.