Show simple item record

Modification of HDL by reactive aldehydes alters select cardioprotective functions of HDL in macrophages

dc.contributor.authorSchill, Rebecca L.
dc.contributor.authorKnaack, Darcy A.
dc.contributor.authorPowers, Hayley R.
dc.contributor.authorChen, Yiliang
dc.contributor.authorYang, Moua
dc.contributor.authorSchill, Daniel J.
dc.contributor.authorSilverstein, Roy L.
dc.contributor.authorSahoo, Daisy
dc.date.accessioned2020-03-17T18:30:41Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-03-17T18:30:41Z
dc.date.issued2020-02
dc.identifier.citationSchill, Rebecca L.; Knaack, Darcy A.; Powers, Hayley R.; Chen, Yiliang; Yang, Moua; Schill, Daniel J.; Silverstein, Roy L.; Sahoo, Daisy (2020). "Modification of HDL by reactive aldehydes alters select cardioprotective functions of HDL in macrophages." The FEBS Journal 287(4): 695-707.
dc.identifier.issn1742-464X
dc.identifier.issn1742-4658
dc.identifier.urihttps://hdl.handle.net/2027.42/154382
dc.publisherWiley Periodicals, Inc.
dc.subject.othermacrophages
dc.subject.otherreactive aldehydes
dc.subject.otherreactive oxygen species
dc.subject.otherHDL
dc.subject.otherinflammation
dc.titleModification of HDL by reactive aldehydes alters select cardioprotective functions of HDL in macrophages
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154382/1/febs15034_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154382/2/febs15034.pdf
dc.identifier.doi10.1111/febs.15034
dc.identifier.sourceThe FEBS Journal
dc.identifier.citedreferenceSima A & Stancu C ( 2002 ) Modified lipoproteins accumulate in human coronary atheroma. J Cell Mol Med 6, 110 – 111.
dc.identifier.citedreferenceLiu W, Yin Y, Zhou Z, He M & Dai Y ( 2014 ) OxLDL‐induced IL‐1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm Res 63, 33 – 43.
dc.identifier.citedreferenceRios FJ, Ferracini M, Pecenin M, Koga MM, Wang Y, Ketelhuth DF & Jancar S ( 2013 ) Uptake of oxLDL and IL‐10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts. PLoS ONE 8, e76893.
dc.identifier.citedreferenceHuang H, Koelle P, Fendler M, Schrottle A, Czihal M, Hoffmann U, Conrad M & Kuhlencordt PJ ( 2014 ) Induction of inducible nitric oxide synthase (iNOS) expression by oxLDL inhibits macrophage derived foam cell migration. Atherosclerosis 235, 213 – 222.
dc.identifier.citedreferenceSuzuki M, Pritchard DK, Becker L, Hoofnagle AN, Tanimura N, Bammler TK, Beyer RP, Bumgarner R, Vaisar T, de Beer MC et al. ( 2010 ) High‐density lipoprotein suppresses the type I interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide. Circulation 122, 1919 – 1927.
dc.identifier.citedreferenceRobbesyn F, Auge N, Vindis C, Cantero AV, Barbaras R, Negre‐Salvayre A & Salvayre R ( 2005 ) High‐density lipoproteins prevent the oxidized low‐density lipoprotein‐induced epidermal [corrected] growth factor receptor activation and subsequent matrix metalloproteinase‐2 upregulation. Arterioscler Thromb Vasc Biol 25, 1206 – 1212.
dc.identifier.citedreferenceDeJarnett N, Conklin DJ, Riggs DW, Myers JA, O’Toole TE, Hamzeh I, Wagner S, Chugh A, Ramos KS, Srivastava S et al. ( 2014 ) Acrolein exposure is associated with increased cardiovascular disease risk. J Am Heart Assoc 3, e000934.
dc.identifier.citedreferenceShao B, O’brien KD, McDonald TO, Fu X, Oram JF, Uchida K & Heinecke JW ( 2005 ) Acrolein modifies apolipoprotein A‐I in the human artery wall. Ann NY Acad Sci 1043, 396 – 403.
dc.identifier.citedreferenceMcCall MR, Tang JY, Bielicki JK & Forte TM ( 1995 ) Inhibition of lecithin‐cholesterol acyltransferase and modification of HDL apolipoproteins by aldehydes. Arterioscler Thromb Vasc Biol 15, 1599 – 1606.
dc.identifier.citedreferenceEsterbauer H, Schaur RJ & Zollner H ( 1991 ) Chemistry and biochemistry of 4‐hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11, 81 – 128.
dc.identifier.citedreferenceShao B, Pennathur S, Pagani I, Oda MN, Witztum JL, Oram JF & Heinecke JW ( 2010 ) Modifying apolipoprotein A‐I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway. J Biol Chem 285, 18473 – 18484.
dc.identifier.citedreferenceWeber D, Milkovic L, Bennett SJ, Griffiths HR, Zarkovic N & Grune T ( 2013 ) Measurement of HNE‐protein adducts in human plasma and serum by ELISA‐Comparison of two primary antibodies. Redox Biol 1, 226 – 233.
dc.identifier.citedreferenceShao B, Fu X, McDonald TO, Green PS, Uchida K, O’Brien KD, Oram JF & Heinecke JW ( 2005 ) Acrolein impairs ATP binding cassette transporter A1‐dependent cholesterol export from cells through site‐specific modification of apolipoprotein A‐I. J Biol Chem 280, 36386 – 36396.
dc.identifier.citedreferenceVirella G, Derrick MB, Pate V, Chassereau C, Thorpe SR & Lopes‐Virella MF ( 2005 ) Development of capture assays for different modifications of human low‐density lipoprotein. Clin Diagn Lab Immunol 12, 68 – 75.
dc.identifier.citedreferenceWagner P & Heinecke JW ( 1997 ) Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL. Arterioscler Thromb Vasc Biol 17, 3338 – 3346.
dc.identifier.citedreferenceGerster R, Eloranta JJ, Hausmann M, Ruiz PA, Cosin‐Roger J, Terhalle A, Ziegler U, Kullak‐Ublick GA, von Eckardstein A & Rogler G ( 2015 ) Anti‐inflammatory function of high‐density lipoproteins via autophagy of IkappaB kinase. Cell Mol Gastroenterol Hepatol 1, 171 – 187.e1.
dc.identifier.citedreferencevan der Vorst EPC, Theodorou K, Wu Y, Hoeksema MA, Goossens P, Bursill CA, Aliyev T, Huitema LFA, Tas SW, Wolfs IMJ et al. ( 2017 ) High‐density lipoproteins exert pro‐inflammatory effects on macrophages via passive cholesterol depletion and PKC‐NF‐kappaB/STAT1‐IRF1 signaling. Cell Metab 25, 197 – 207.
dc.identifier.citedreferenceMcLaren JE, Michael DR, Ashlin TG & Ramji DP ( 2011 ) Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 50, 331 – 347.
dc.identifier.citedreferenceGargiulo S, Gamba P, Testa G, Rossin D, Biasi F, Poli G & Leonarduzzi G ( 2015 ) Relation between TLR4/NF‐kappaB signaling pathway activation by 27‐hydroxycholesterol and 4‐hydroxynonenal, and atherosclerotic plaque instability. Aging Cell 14, 569 – 581.
dc.identifier.citedreferenceLou Y, Liu S, Zhang C, Zhang G, Li J, Ni M, An G, Dong M, Liu X, Zhu F et al. ( 2013 ) Enhanced atherosclerosis in TIPE2‐deficient mice is associated with increased macrophage responses to oxidized low‐density lipoprotein. J Immunol 191, 4849 – 4857.
dc.identifier.citedreferenceBird DA, Gillotte KL, Horkko S, Friedman P, Dennis EA, Witztum JL & Steinberg D ( 1999 ) Receptors for oxidized low‐density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties: implications with respect to macrophage recognition of apoptotic cells. Proc Natl Acad Sci USA 96, 6347 – 6352.
dc.identifier.citedreferenceFujioka Y, Cooper AD & Fong LG ( 1998 ) Multiple processes are involved in the uptake of chylomicron remnants by mouse peritoneal macrophages. J Lipid Res 39, 2339 – 2349.
dc.identifier.citedreferenceBrundert M, Heeren J, Bahar‐Bayansar M, Ewert A, Moore KJ & Rinninger F ( 2006 ) Selective uptake of HDL cholesteryl esters and cholesterol efflux from mouse peritoneal macrophages independent of SR‐BI. J Lipid Res 47, 2408 – 2421.
dc.identifier.citedreferenceDurham KK, Chathely KM & Trigatti BL ( 2018 ) High‐density lipoprotein protects cardiomyocytes against necrosis induced by oxygen and glucose deprivation through SR‐B1, PI3K, and AKT1 and 2. Biochem J 475, 1253 – 1265.
dc.identifier.citedreferenceMurch AR & Papadimitriou JM ( 1981 ) The kinetics of murine peritoneal macrophage replication. J Pathol 133, 177 – 183.
dc.identifier.citedreferenceMarinkovic E, Djokic R, Lukic I, Filipovic A, Inic‐Kanada A, Kosanovic D, Gavrovic‐Jankulovic M & Stojanovic M ( 2017 ) Modulation of functional characteristics of resident and thioglycollate‐elicited peritoneal murine macrophages by a recombinant banana lectin. PLoS ONE 12, e0172469.
dc.identifier.citedreferencePavlou S, Wang L, Xu H & Chen M ( 2017 ) Higher phagocytic activity of thioglycollate‐elicited peritoneal macrophages is related to metabolic status of the cells. J Inflamm (Lond) 14, 4.
dc.identifier.citedreferenceKosmas CE, DeJesus E, Rosario D & Vittorio TJ ( 2016 ) CETP inhibition: past failures and future hopes. Clin Med Insights Cardiol 10, 37 – 42.
dc.identifier.citedreferenceVoight BF, Peloso GM, Orho‐Melander M, Frikke‐Schmidt R, Barbalic M, Jensen MK, Hindy G, Holm H, Ding EL, Johnson T et al. ( 2012 ) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380, 572 – 580.
dc.identifier.citedreferenceAnsell BJ, Watson KE, Fogelman AM, Navab M & Fonarow GC ( 2005 ) High‐density lipoprotein function recent advances. J Am Coll Cardiol 46, 1792 – 1798.
dc.identifier.citedreferenceActon S, Rigotti A, Landschulz KT, Xu S, Hobbs HH & Krieger M ( 1996 ) Identification of scavenger receptor SR‐BI as a high density lipoprotein receptor. Science 271, 518 – 520.
dc.identifier.citedreferenceEndemann G, Stanton LW, Madden KS, Bryant CM, White RT & Protter AA ( 1993 ) CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 268, 11811 – 11816.
dc.identifier.citedreferenceYu XH, Fu YC, Zhang DW, Yin K & Tang CK ( 2013 ) Foam cells in atherosclerosis. Clin Chim Acta 424, 245 – 252.
dc.identifier.citedreferenceBerliner JA & Heinecke JW ( 1996 ) The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 20, 707 – 727.
dc.identifier.citedreferenceJi Y, Wang N, Ramakrishnan R, Sehayek E, Huszar D, Breslow JL & Tall AR ( 1999 ) Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J Biol Chem 274, 33398 – 33402.
dc.identifier.citedreferenceTerasaka N, Wang N, Yvan‐Charvet L & Tall AR ( 2007 ) High‐density lipoprotein protects macrophages from oxidized low‐density lipoprotein‐induced apoptosis by promoting efflux of 7‐ketocholesterol via ABCG1. Proc Natl Acad Sci USA 104, 15093 – 15098.
dc.identifier.citedreferenceYvan‐Charvet L, Kling J, Pagler T, Li H, Hubbard B, Fisher T, Sparrow CP, Taggart AK & Tall AR ( 2010 ) Cholesterol efflux potential and antiinflammatory properties of high‐density lipoprotein after treatment with niacin or anacetrapib. Arterioscler Thromb Vasc Biol 30, 1430 – 1438.
dc.identifier.citedreferenceAl‐Jarallah A, Chen X, Gonzalez L & Trigatti BL ( 2014 ) High density lipoprotein stimulated migration of macrophages depends on the scavenger receptor class B, type I, PDZK1 and Akt1 and is blocked by sphingosine 1 phosphate receptor antagonists. PLoS ONE 9, e106487.
dc.identifier.citedreferenceBesler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, Chroni A, Yonekawa K, Stein S, Schaefer N et al. ( 2011 ) Mechanisms underlying adverse effects of HDL on eNOS‐activating pathways in patients with coronary artery disease. J Clin Invest 121, 2693 – 2708.
dc.identifier.citedreferenceKaseda R, Jabs K, Hunley TE, Jones D, Bian A, Allen RM, Vickers KC, Yancey PG, Linton MF, Fazio S et al. ( 2014 ) Dysfunctional high‐density lipoproteins in children with chronic kidney disease. Metabolism 64, 263 – 273.
dc.identifier.citedreferenceSmith CK, Seto NL, Vivekanandan‐Giri A, Yuan W, Playford MP, Manna Z, Hasni SA, Kuai R, Mehta NN, Schwendeman A et al. ( 2017 ) Lupus high‐density lipoprotein induces proinflammatory responses in macrophages by binding lectin‐like oxidised low‐density lipoprotein receptor 1 and failing to promote activating transcription factor 3 activity. Ann Rheum Dis. 76, 602 – 611.
dc.identifier.citedreferenceMcMahon M, Grossman J, FitzGerald J, Dahlin‐Lee E, Wallace DJ, Thong BY, Badsha H, Kalunian K, Charles C, Navab M et al. ( 2006 ) Proinflammatory high‐density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 54, 2541 – 2549.
dc.identifier.citedreferenceEllis EM ( 2007 ) Reactive carbonyls and oxidative stress: potential for therapeutic intervention. Pharmacol Ther 115, 13 – 24.
dc.identifier.citedreferenceConklin DJ, Barski OA, Lesgards JF, Juvan P, Rezen T, Rozman D, Prough RA, Vladykovskaya E, Liu S, Srivastava S et al. ( 2010 ) Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicol Appl Pharmacol 243, 1 – 12.
dc.identifier.citedreferenceSrivastava S, Conklin DJ, Liu SQ, Prakash N, Boor PJ, Srivastava SK & Bhatnagar A ( 2001 ) Identification of biochemical pathways for the metabolism of oxidized low‐density lipoprotein derived aldehyde‐4‐hydroxy trans‐2‐nonenal in vascular smooth muscle cells. Atherosclerosis 158, 339 – 350.
dc.identifier.citedreferenceTanaga K, Bujo H, Inoue M, Mikami K, Kotani K, Takahashi K, Kanno T & Saito Y ( 2002 ) Increased circulating malondialdehyde‐modified LDL levels in patients with coronary artery diseases and their association with peak sizes of LDL particles. Arterioscler Thromb Vasc Biol 22, 662 – 666.
dc.identifier.citedreferenceCarnuta MG, Stancu CS, Toma L, Sanda GM, Niculescu LS, Deleanu M, Popescu AC, Popescu MR, Vlad A, Dimulescu DR et al. ( 2017 ) Dysfunctional high‐density lipoproteins have distinct composition, diminished anti‐inflammatory potential and discriminate acute coronary syndrome from stable coronary artery disease patients. Sci Rep 7, 7295.
dc.identifier.citedreferenceHuang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, Buffa J, Kim T, Gerstenecker GS, Gu X et al. ( 2014 ) An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 20, 193 – 203.
dc.identifier.citedreferenceHolvoet P, Perez G, Zhao Z, Brouwers E, Bernar H & Collen D ( 1995 ) Malondialdehyde‐modified low density lipoproteins in patients with atherosclerotic disease. J Clin Invest 95, 2611 – 2619.
dc.identifier.citedreferenceChadwick AC, Holme RL, Chen Y, Thomas MJ, Sorci‐Thomas MG, Silverstein RL, Pritchard KA Jr & Sahoo D ( 2015 ) Acrolein impairs the cholesterol transport functions of high density lipoproteins. PLoS ONE 10, e0123138.
dc.identifier.citedreferencePark YM, Febbraio M & Silverstein RL ( 2009 ) CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest 119, 136 – 145.
dc.identifier.citedreferenceZielonka J, Zielonka M, Sikora A, Adamus J, Joseph J, Hardy M, Ouari O, Dranka BP & Kalyanaraman B ( 2012 ) Global profiling of reactive oxygen and nitrogen species in biological systems: high‐throughput real‐time analyses. J Biol Chem 287, 2984 – 2995.
dc.identifier.citedreferenceSilverstein RL, Li W, Park YM & Rahaman SO ( 2010 ) Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc 121, 206 – 220.
dc.identifier.citedreferenceUndurti A, Huang Y, Lupica JA, Smith JD, DiDonato JA & Hazen SL ( 2009 ) Modification of high density lipoprotein by myeloperoxidase generates a pro‐inflammatory particle. J Biol Chem 284, 30825 – 30835.
dc.identifier.citedreferenceMcLaren JE & Ramji DP ( 2009 ) Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev 20, 125 – 135.
dc.identifier.citedreferenceRamji DP & Davies TS ( 2015 ) Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev 26, 673 – 685.
dc.identifier.citedreferenceSingh NN & Ramji DP ( 2006 ) The role of transforming growth factor‐beta in atherosclerosis. Cytokine Growth Factor Rev 17, 487 – 499.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.