Show simple item record

Imbalance of Hsp70 family variants fosters tau accumulation

dc.contributor.authorJinwal, Umesh K.
dc.contributor.authorAkoury, Elias
dc.contributor.authorAbisambra, Jose F.
dc.contributor.authorO’Leary, John C.
dc.contributor.authorThompson, Andrea D.
dc.contributor.authorBlair, Laura J.
dc.contributor.authorJin, Ying
dc.contributor.authorBacon, Justin
dc.contributor.authorNordhues, Bryce A.
dc.contributor.authorCockman, Matthew
dc.contributor.authorZhang, Juan
dc.contributor.authorLi, Pengfei
dc.contributor.authorZhang, Bo
dc.contributor.authorBorysov, Sergiy
dc.contributor.authorUversky, Vladimir N.
dc.contributor.authorBiernat, Jacek
dc.contributor.authorMandelkow, Eckhard
dc.contributor.authorGestwicki, Jason E.
dc.contributor.authorZweckstetter, Markus
dc.contributor.authorDickey, Chad A.
dc.date.accessioned2020-03-17T18:31:25Z
dc.date.available2020-03-17T18:31:25Z
dc.date.issued2013-04
dc.identifier.citationJinwal, Umesh K.; Akoury, Elias; Abisambra, Jose F.; O’Leary, John C.; Thompson, Andrea D.; Blair, Laura J.; Jin, Ying; Bacon, Justin; Nordhues, Bryce A.; Cockman, Matthew; Zhang, Juan; Li, Pengfei; Zhang, Bo; Borysov, Sergiy; Uversky, Vladimir N.; Biernat, Jacek; Mandelkow, Eckhard; Gestwicki, Jason E.; Zweckstetter, Markus; Dickey, Chad A. (2013). "Imbalance of Hsp70 family variants fosters tau accumulation." The FASEB Journal 27(4): 1450-1459.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154405
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCHIP
dc.subject.otherHsc70
dc.subject.otherAlzheimer’s
dc.subject.otherHsp72
dc.subject.otherchaperones
dc.titleImbalance of Hsp70 family variants fosters tau accumulation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154405/1/fsb2027004018.pdf
dc.identifier.doi10.1096/fj.12-220889
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceBallinger, C. A., Connell, P., Wu, Y., Hu, Z., Thompson, L. J., Yin, L. Y., and Patterson, C. ( 1999 ) Identification of CHIP, a novel tetratricopeptide repeat‐containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19, 4535 – 4545
dc.identifier.citedreferenceDou, F., Netzer, W. J., Tanemura, K., Li, F., Hartl, F. U., Takashima, A., Gouras, G. K., Greengard, P., and Xu, H. ( 2003 ) Chaperones increase association of tau protein with microtubules. Proc. Natl. Acad. Sci. U. S. A. 100, 721 – 726
dc.identifier.citedreferenceKoren, J., 3rd, Miyata, Y., Kiray, J., O’Leary, J. C., 3rd, Nguyen, L., Guo, J., Blair, L. J., Li, X., Jinwal, U. K., Cheng, J. Q., Gestwicki, J. E., and Dickey, C. A. ( 2012 ) Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance. PloS ONE 7, e35566
dc.identifier.citedreferenceGoldfarb, S. B., Kashlan, O. B., Watkins, J. N., Suaud, L., Yan, W., Kleyman, T. R., and Rubenstein, R. C. ( 2006 ) Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc. Natl Acad. Sci. U. S. A. 103, 5817 – 5822
dc.identifier.citedreferenceBlack, M. M., Chestnut, M. H., Pleasure, I. T., and Keen, J. H. ( 1991 ) Stable clathrin: uncoating protein (Hsc70) complexes in intact neurons and their axonal transport. J. Neurosci. 11, 1163 – 1172
dc.identifier.citedreferenceWilliams, G. T., and Morimoto, R. I. ( 1990 ) Maximal stress‐induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol. Cell. Biol. 10, 3125 – 3136
dc.identifier.citedreferenceTavaria, M., Gabriele, T., Kola, I., and Anderson, R. L. ( 1996 ) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1, 23 – 28
dc.identifier.citedreferenceQian, S. B., McDonough, H., Boellmann, F., Cyr, D. M., and Patterson, C. ( 2006 ) CHIP‐mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440, 551 – 555
dc.identifier.citedreferenceJinwal, U. K., Koren, J., 3rd, Borysov, S. I., Schmid, A. B., Abisambra, J. F., Blair, L. J., Johnson, A. G., Jones, J. R., Shults, C. L., O’Leary, J. C., 3rd, Jin, Y., Buchner, J., Cox, M. B., and Dickey, C. A. ( 2010 ) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J. Neurosci. 30, 591 – 599
dc.identifier.citedreferenceO’Leary, J. C., 3rd, Li, Q., Marinec, P., Blair, L. J., Congdon, E. E., Johnson, A. G., Jinwal, U. K., Koren, J., 3rd, Jones, J. R., Kraft, C., Peters, M., Abisambra, J. F., Duff, K. E., Weeber, E. J., Gestwicki, J. E., and Dickey, C. A. ( 2010 ) Phenothiazine‐mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol. Neurodegener. 5, 45
dc.identifier.citedreferenceDickey, C., Kraft, C., Jinwal, U., Koren, J., Johnson, A., Anderson, L., Lebson, L., Lee, D., Dickson, D., de Silva, R., Binder, L. I., Morgan, D., and Lewis, J. ( 2009 ) Aging analysis reveals slowed tau turnover and enhanced stress response in a mouse model of tauopathy. Am. J. Pathol. 174, 228 – 238
dc.identifier.citedreferenceDesai, A., Verma, S., Mitchison, T. J., and Walczak, C. E. ( 1999 ) Kin I kinesins are microtubule‐destabilizing enzymes. Cell 96, 69 – 78
dc.identifier.citedreferenceBudde, P. P., Desai, A., and Heald, R. ( 2006 ) Analysis of microtubule polymerization in vitro and during the cell cycle in Xenopus egg extracts. Methods 38, 29 – 34
dc.identifier.citedreferenceMukrasch, M. D., Biernat, J., von Bergen, M., Griesinger, C., Mandelkow, E., and Zweckstetter, M. ( 2005 ) Sites of tau important for aggregation populate β‐structure and bind to microtubules and polyanions. J. Biol. Chem. 280, 24978 – 24986
dc.identifier.citedreferenceDelaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. ( 1995 ) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277 – 293
dc.identifier.citedreferenceVranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L., Ionides, J., and Laue, E. D. ( 2005 ) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687 – 696
dc.identifier.citedreferenceAbisambra, J. F., Blair, L. J., Hill, S. E., Jones, J. R., Kraft, C., Rogers, J., Koren, J., 3rd, Jinwal, U. K., Lawson, L., Johnson, A. G., Wilcock, D., O’Leary, J. C., Jansen‐West, K., Muschol, M., Golde, T. E., Weeber, E. J., Banko, J., and Dickey, C. A. ( 2010 ) Phosphorylation dynamics regulate Hsp27‐mediated rescue of neuronal plasticity deficits in tau transgenic mice. J. Neurosci. 30, 15374 – 15382
dc.identifier.citedreferenceRicci, L., and Williams, K. P. ( 2008 ) Development of fluorescence polarization assays for the molecular chaperone Hsp70 family members: Hsp72 and DnaK. Curr. Chem. Genomics 2, 90 – 95
dc.identifier.citedreferenceWesterheide, S. D., Bosman, J. D., Mbadugha, B. N., Kawahara, T. L., Matsumoto, G., Kim, S., Gu, W., Devlin, J. P., Silverman, R. B., and Morimoto, R. I. ( 2004 ) Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem. 279, 56053 – 56060
dc.identifier.citedreferenceJo, H., Loison, F., Hattori, H., Silberstein, L. E., Yu, H., and Luo, H. R. ( 2010 ) Natural product Celastrol destabilizes tubulin heterodimer and facilitates mitotic cell death triggered by microtubule‐targeting anti‐cancer drugs. PloS ONE 5, e10318
dc.identifier.citedreferenceWang, Y., Martinez‐Vicente, M., Kruger, U., Kaushik, S., Wong, E., Mandelkow, E. M., Cuervo, A. M., and Mandelkow, E. ( 2009 ) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153 – 4170
dc.identifier.citedreferenceSarkar, M., Kuret, J., and Lee, G. ( 2008 ) Two motifs within the tau microtubule‐binding domain mediate its association with the hsc70 molecular chaperone. J. Neurosci. Res. 86, 2763 – 2773
dc.identifier.citedreferenceDolan, P. J., and Johnson, G. V. ( 2010 ) A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J. Biol. Chem. 285, 21978 – 21987
dc.identifier.citedreferenceRudiger, S., Buchberger, A., and Bukau, B. ( 1997 ) Interaction of Hsp70 chaperones with substrates. Nat. Struc. Biol. 4, 342 – 349
dc.identifier.citedreferenceZhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., and Hendrickson, W. A. ( 1996 ) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606 – 1614
dc.identifier.citedreferenceSahara, N., Murayama, M., Mizoroki, T., Urushitani, M., Imai, Y., Takahashi, R., Murata, S., Tanaka, K., and Takashima, A. ( 2005 ) In vivo evidence of CHIP up‐regulation attenuating tau aggregation. J. Neurochem. 94, 1254 – 1263
dc.identifier.citedreferenceHammond, G. L., Lai, Y. K., and Markert, C. L. ( 1982 ) Diverse forms of stress lead to new patterns of gene expression through a common and essential metabolic pathway. Proc. Natl. Acad. Sci. U. S. A. 79, 3485 – 3488
dc.identifier.citedreferenceFawcett, T. W., Sylvester, S. L., Sarge, K. D., Morimoto, R. I., and Holbrook, N. J. ( 1994 ) Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. J. Biol. Chem. 269, 32272 – 32278
dc.identifier.citedreferenceHeydari, A. R., Wu, B., Takahashi, R., Strong, R., and Richardson, A. ( 1993 ) Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol. Cell. Biol. 13, 2909 – 2918
dc.identifier.citedreferenceVon Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E. M., and Mandelkow, E. ( 2000 ) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl. Acad. Sci. U. S. A. 97, 5129 – 5134
dc.identifier.citedreferenceVon Bergen, M., Barghorn, S., Li, L., Marx, A., Biernat, J., Mandelkow, E. M., and Mandelkow, E. ( 2001 ) Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta‐structure. J. Biol. Chem. 276, 48165 – 48174
dc.identifier.citedreferenceGoldschmidt, L., Teng, P. K., Riek, R., and Eisenberg, D. ( 2010 ) Identifying the amylome, proteins capable of forming amyloidlike fibrils. Proc. Natl. Acad. Sci. U. S. A. 107, 3487 – 3492
dc.identifier.citedreferenceSong, Y., Wu, Y. X., Jung, G., Tutar, Y., Eisenberg, E., Greene, L. E., and Masison, D. C. ( 2005 ) Role for Hsp70 chaperone in Saccharomyces cerevisiae prion seed replication. Eukaryot. Cell 4, 289 – 297
dc.identifier.citedreferenceEisenberg, D., Nelson, R., Sawaya, M. R., Balbirnie, M., Sambashivan, S., Ivanova, M. I., Madsen, A. O., and Riekel, C. ( 2006 ) The structural biology of protein aggregation diseases: fundamental questions and some answers. Acc. Chem. Res. 39, 568 – 575
dc.identifier.citedreferenceCuervo, A. M., and Dice, J. F. ( 1996 ) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501 – 503
dc.identifier.citedreferenceDickey, C. A., Dunmore, J., Lu, B., Wang, J. W., Lee, W. C., Kamal, A., Burrows, F., Eckman, C., Hutton, M., and Petrucelli, L. ( 2006 ) HSP induction mediates selective clearance of tau phosphorylated at proline‐directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J. 20, 753 – 755
dc.identifier.citedreferenceDickey, C. A., Kamal, A., Lundgren, K., Klosak, N., Bailey, R. M., Dunmore, J., Ash, P., Shoraka, S., Zlatkovic, J., Eckman, C. B., Patterson, C., Dickson, D. W., Nahman, N. S., Jr., Hutton, M., Burrows, F., and Petrucelli, L. ( 2007 ) The high‐affinity HSP90‐CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Invest. 117, 648 – 658
dc.identifier.citedreferenceJinwal, U. K., Miyata, Y., Koren, J., 3rd, Jones, J. R., Trotter, J. H., Chang, L., O’Leary, J., Morgan, D., Lee, D. C., Shults, C. L., Rousaki, A., Weeber, E. J., Zuiderweg, E. R., Gestwicki, J. E., and Dickey, C. A. ( 2009 ) Chemical manipulation of hsp70 ATPase activity regulates tau stability. J. Neurosci. 29, 12079 – 12088
dc.identifier.citedreferenceDrewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M., and Mandelkow, E. ( 1997 ) MARK, a novel family of protein kinases that phosphorylate microtubule‐associated proteins and trigger microtubule disruption. Cell 89, 297 – 308
dc.identifier.citedreferenceLi, X., Kumar, Y., Zempel, H., Mandelkow, E. M., Biernat, J., and Mandelkow, E. ( 2011 ) Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J. 30, 4825 – 4837
dc.identifier.citedreferenceJinwal, U. K., O’Leary, J. C., 3rd, Borysov, S. I., Jones, J. R., Li, Q., Koren, J., 3rd, Abisambra, J. F., Vestal, G. D., Lawson, L. Y., Johnson, A. G., Blair, L. J., Jin, Y., Miyata, Y., Gestwicki, J. E., and Dickey, C. A. ( 2010 ) Hsc70 rapidly engages tau after microtubule destabilization. J. Biol. Chem. 285, 16798 – 16805
dc.identifier.citedreferenceEbneth, A., Godemann, R., Stamer, K., Illenberger, S., Trinczek, B., and Mandelkow, E. ( 1998 ) Overexpression of tau protein inhibits kinesin‐dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J. Cell Biol. 143, 777 – 794
dc.identifier.citedreferenceMattson, M. P. ( 1992 ) Effects of microtubule stabilization and destabilization on tau immunoreactivity in cultured hippocampal neurons. Brain Res. 582, 107 – 118
dc.identifier.citedreferenceBrion, J. P., Octave, J. N., and Couck, A. M. ( 1994 ) Distribution of the phosphorylated microtubule‐associated protein tau in developing cortical neurons. Neuroscience 63, 895 – 909
dc.identifier.citedreferencePetrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., McGowan, E., Lewis, J., Prihar, G., Kim, J., Dillmann, W. H., Browne, S. E., Hall, A., Voellmy, R., Tsuboi, Y., Dawson, T. M., Wolozin, B., Hardy, J., and Hutton, M. ( 2004 ) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet. 13, 703 – 714
dc.identifier.citedreferenceDickey, C. A., Yue, M., Lin, W. L., Dickson, D. W., Dunmore, J. H., Lee, W. C., Zehr, C., West, G., Cao, S., Clark, A. M., Caldwell, G. A., Caldwell, K. A., Eckman, C., Patterson, C., Hutton, M., and Petrucelli, L. ( 2006 ) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho‐ and caspase‐3‐cleaved tau species. J. Neurosci. 26, 6985 – 6996
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.