Show simple item record

Statistical Analysis of the Main Ionospheric Trough Using Swarm in Situ Measurements

dc.contributor.authorAa, Ercha
dc.contributor.authorZou, Shasha
dc.contributor.authorErickson, Philip J.
dc.contributor.authorZhang, Shun‐rong
dc.contributor.authorLiu, Siqing
dc.date.accessioned2020-03-17T18:31:29Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:31:29Z
dc.date.issued2020-03
dc.identifier.citationAa, Ercha; Zou, Shasha; Erickson, Philip J.; Zhang, Shun‐rong ; Liu, Siqing (2020). "Statistical Analysis of the Main Ionospheric Trough Using Swarm in Situ Measurements." Journal of Geophysical Research: Space Physics 125(3): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/154408
dc.description.abstractA statistical analysis of the topside main ionospheric trough is implemented by using the Swarm constellation in situ plasma density measurements from December 2013 to November 2019. The key features of the main trough, such as the occurrence rate, minimum position, width, and depth, are characterized and quantified. The distribution patterns of these parameters are investigated with respect to magnetic local time, season, longitude, solar activity, and geomagnetic activity levels, respectively. The main results are as follows: (1) The diurnal variation of the trough occurrence rate usually exhibits a primary peak in the early morning, a subsidiary peak in the late evening, and a slight reduction around midnight especially in the Northern Hemisphere. (2) The seasonal variation of the nighttime trough has maximum occurrence rates around equinoxes, higher than those in local winter. (3) The trough distribution has an evident hemispherical asymmetry. It is more pronounced in the Northern Hemisphere during the winter and equinoctial seasons, with its average nighttime occurrence rate being 20â 30% higher than that in the Southern Hemisphere. The trough minimum position and the trough width also exhibit more significant fluctuation in the Northern Hemisphere. (4) The longitudinal pattern of the trough shows clear eastâ west preferences, which has a higher occurrence rate in eastern (western) longitudes around the December (June) solstice. (5) Conditions for the trough occurrence are more favored in low solar activity and high geomagnetic activity periods.Key PointsThe occurrence rate of the main ionospheric trough at 450â 550 km exhibits a slight midnight reduction comparing with evening/morning peaksThe trough has a longitudinal preference with higher occurrence rate in the eastern (western) longitudes around the December (June) solsticeConditions for the trough occurrence are more favored in equinoxes than local winter and in Northern Hemisphere than Southern Hemisphere
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherminimum position variation
dc.subject.otheroccurrence rate variation
dc.subject.otherSwarm in situ Ne
dc.subject.othermain ionospheric trough
dc.titleStatistical Analysis of the Main Ionospheric Trough Using Swarm in Situ Measurements
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154408/1/jgra55592.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154408/2/jgra55592_am.pdf
dc.identifier.doi10.1029/2019JA027583
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSotirelis, T., & Newell, P. T. ( 2000 ). Boundaryâ oriented electron precipitation model. Journal of Geophysical Research: Space Physics, 105 ( A8 ), 18,655 â 18,673. https://doi.org/10.1029/1999JA000269
dc.identifier.citedreferenceShinbori, A., Otsuka, Y., Tsugawa, T., Nishioka, M., Kumamoto, A., Tsuchiya, F., Matsuda, S., Kasahara, Y., Matsuoka, A., Ruohoniemi, J. M., Shepherd, S. G., & Nishitani, N. ( 2018 ). Temporal and spatial variations of storm time midlatitude ionospheric trough based on global GNSSâ TEC and Arase satellite observations. Geophysical Research Letters, 45, 7362 â 7370. https://doi.org/10.1029/2018GL078723
dc.identifier.citedreferenceSpiro, R. W., Heelis, R. A., & Hanson, W. B. ( 1978 ). Ion convection and the formation of the midâ latitude F region ionization trough. Journal of Geophysical Research, 83 ( A9 ), 4255 â 4264. https://doi.org/10.1029/JA083iA09p04255
dc.identifier.citedreferenceSpiro, R. W., Heelis, R. A., & Hanson, W. B. ( 1979 ). Rapid subauroral ion drifts observed by Atmosphere Explorer C. Geophysical Research Letters, 6 ( 8 ), 657 â 660. https://doi.org/10.1029/GL006i008p00657
dc.identifier.citedreferenceSpiro, R. W., Reiff, P. H., & Maher, L. J. Jr. ( 1982 ). Precipitating electron energy flux and auroral zone conductancesâ An empirical model. Journal of Geophysical Research, 87 ( A10 ), 8215 â 8227. https://doi.org/10.1029/JA087iA10p08215
dc.identifier.citedreferenceTulunay, Y. K., & Sayers, J. ( 1971 ). Characteristics of the midâ latitude trough as determined by the electron density experiment on Ariel III. Journal of Atmospheric and Terrestrial Physics, 33 ( 11 ), 1737 â 1761. https://doi.org/10.1016/0021-9169(71)90221-2
dc.identifier.citedreferenceVo, H. B., & Foster, J. C. ( 2001 ). A quantitative study of ionospheric density gradients at midlatitudes. Journal of Geophysical Research, 106 ( A10 ), 21,555 â 21,564. https://doi.org/10.1029/2000JA000397
dc.identifier.citedreferenceVoiculescu, M., & Nygrén, T. ( 2007 ). IMF effect on ionospheric trough occurrence at equinoxes. Advances in Space Research, 40 ( 12 ), 1935 â 1940. https://doi.org/10.1016/j.asr.2007.04.108
dc.identifier.citedreferenceVoiculescu, M., Nygrén, T., Aikio, A., & Kuula, R. ( 2010 ). An olden but golden EISCAT observation of a quietâ time ionospheric trough. Journal of Geophysical Research, 115, A10315. https://doi.org/10.1029/2010JA015557
dc.identifier.citedreferenceVoiculescu, M., Nygrén, T., Aikio, A. T., Vanhamäki, H., & Pierrard, V. ( 2016 ). Postmidnight ionospheric troughs in summer at high latitudes. Journal of Geophysical Research: Space Physics, 121, 12,171 â 12,185. https://doi.org/10.1002/2016JA023360
dc.identifier.citedreferenceVoiculescu, M., & Roth, M. ( 2008 ). Eastward subâ auroral ion drifts or ASAID. Annales Geophysicae, 26 ( 7 ), 1955 â 1963. https://doi.org/10.5194/angeo-26-1955-2008
dc.identifier.citedreferenceVoiculescu, M., Virtanen, I., & Nygrén, T. ( 2006 ). The F â region trough: Seasonal morphology and relation to interplanetary magnetic field. Annales Geophysicae, 24 ( 1 ), 173 â 185. https://doi.org/10.1002/2016JA023360
dc.identifier.citedreferenceWerner, S., & Prölss, G. W. ( 1997 ). The position of the ionospheric trough as a function of local time and magnetic activity. Advances in Space Research, 20 ( 9 ), 1717 â 1722. https://doi.org/10.1016/S0273-1177(97)00578-4
dc.identifier.citedreferenceWhalen, J. A. ( 1989 ). The daytime F layer trough and its relation to ionosphericâ magnetospheric convection. Journal of Geophysical Research, 94 ( A12 ), 17,169 â 17,184. https://doi.org/10.1029/JA094iA12p17169
dc.identifier.citedreferenceYang, N., Le, H., & Liu, L. ( 2015 ). Statistical analysis of ionospheric midâ latitude trough over the Northern Hemisphere derived from GPS total electron content data. Earth, Planets, and Space, 67, 196. https://doi.org/10.1186/s40623-015-0365-1
dc.identifier.citedreferenceYang, N., Le, H., & Liu, L. ( 2016 ). Statistical analysis of the midâ latitude trough position during different categories of magnetic storms and different storm intensities. Earth, Planets, and Space, 68 ( 1 ), 171. https://doi.org/10.1186/s40623-016-0554-6
dc.identifier.citedreferenceYang, N., Le, H., Liu, L., & Zhang, R. ( 2018 ). Statistical behavior of the longitudinal variations of the evening topside midâ latitude trough position in both Northern and Southern Hemispheres. Journal of Geophysical Research: Space Physics, 123, 3983 â 3997. https://doi.org/10.1029/2017JA025048
dc.identifier.citedreferenceYizengaw, E., & Moldwin, M. ( 2005 ). The altitude extension of the midâ latitude trough and its correlation with plasmapause position. Geophysical Research Letters, 32, L09105. https://doi.org/10.1029/2005GL022854
dc.identifier.citedreferenceZhang, S.â R., Foster, J. C., Coster, A. J., & Erickson, P. J. ( 2011 ). Eastâ west coast differences in total electron content over the continental US. Geophysical Research Letters, 38, L19101. https://doi.org/10.1029/2011GL049116
dc.identifier.citedreferenceZhang, S.â R., Foster, J. C., Holt, J. M., Erickson, P. J., & Coster, A. J. ( 2012 ). Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes. Journal of Geophysical Research, 117, A08329. https://doi.org/10.1029/2012JA017954
dc.identifier.citedreferenceZou, S., Lyons, L. R., Nicolls, M. J., Heinselman, C. J., & Mende, S. B. ( 2009 ). Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. Journal of Geophysical Research, 114, A12301. https://doi.org/10.1029/2009JA014259
dc.identifier.citedreferenceZou, S., Lyons, L. R., & Nishimura, Y. ( 2013 ). Mutual evolution of aurora and ionospheric electrodynamic features near the harang reversal during substorms, Auroral phenomenology and magnetospheric processes: Earth and other planets  (pp. 159 â 170 ). Washington, DC: American Geophysical Union (AGU).
dc.identifier.citedreferenceZou, S., Lyons, L. R., Wang, C. P., Boudouridis, A., Ruohoniemi, J. M., Anderson, P. C., Dyson, P. L., & Devlin, J. C. ( 2009 ). On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. Journal of Geophysical Research: Space Physics, 114, A01205. https://doi.org/10.1029/2008JA013449
dc.identifier.citedreferenceZou, S., Moldwin, M., Coster, A., Lyons, L., & Nicolls, M. ( 2011 ). GPS TEC observations of dynamics of the midâ latitude trough during substorms. Geophysical Research Letters, 38, L14109. https://doi.org/10.1029/2011GL048178
dc.identifier.citedreferenceZou, S., Moldwin, M. B., Nicolls, M. J., Ridley, A. J., Coster, A. J., Yizengaw, E., Lyons, L. R., & Donovan, E. F. ( 2013 ). Electrodynamics of the highâ latitude trough: Its relationship with convection flows and fieldâ aligned currents. Journal of Geophysical Research: Space Physics, 118, 2565 â 2572. https://doi.org/10.1002/jgra.50120
dc.identifier.citedreferenceAfonin, V. V., Benkova, N. P., Besprozvannaya, A. S., Shchuka, T. I., Zikrach, E. K., & Shestakova, L. V.  ( 1995 ). The ionospheric trough dynamics in the Northern and Southern Hemispheres: The longitudinal and IMF effect. Journal of Atmospheric and Terrestrial Physics, 57 ( 9 ), 1057 â 1062. https://doi.org/10.1016/0021-9169(95)96865-T
dc.identifier.citedreferenceAhmed, M., Sagalyn, R. C., Wildman, P. J. L., & Burke, W. J. ( 1979 ). Topside ionospheric trough morphology: Occurrence frequency and diurnal, seasonal, and altitude variations. Journal of Geophysical Research, 84 ( A2 ), 489 â 498. https://doi.org/10.1029/JA084iA02p00489
dc.identifier.citedreferenceAnderson, P. C., Heelis, R. A., & Hanson, W. B. ( 1991 ). The ionospheric signatures of rapid subauroral ion drifts. Journal of Geophysical Research, 96 ( A4 ), 5785 â 5792. https://doi.org/10.1029/90JA02651
dc.identifier.citedreferenceCarbary, J. F. ( 2005 ). A K p â based model of auroral boundaries. Space Weather, 3, S10001. https://doi.org/10.1029/2005SW000162
dc.identifier.citedreferenceCarpenter, D., & Lemaire, J. ( 2004 ). The plasmasphere boundary layer. Annales Geophysicae, 22 ( 12 ), 4291 â 4298. https://doi.org/10.5194/angeo-22-4291-2004
dc.identifier.citedreferenceCollis, P. N., & Haggstrom, I. ( 1988 ). Plasma convection and auroral precipitation processes associated with the main ionospheric trough at high latitudes. Journal of Atmospheric and Terrestrial Physics, 50, 389 â 404. https://doi.org/10.1016/0021-9169(88)90024-4
dc.identifier.citedreferenceCortie, A. L. ( 1912 ). Sunâ spots and terrestrial magnetic phenomena, 1898â 1911. Monthly Notices of the Royal Astronomical Society, 73, 52. https://doi.org/10.1093/mnras/73.1.52
dc.identifier.citedreferenceDeminov, M. G., & Karpachev, A. T. ( 1986 ). A longitudinal effect in the configuration of the main ionospheric trough. Iâ Location of the trough. Geomagnetism and Aeronomy, 26, 63 â 68.
dc.identifier.citedreferenceDeminov, M. G., & Shubin, V. N. ( 2018 ). Empirical model of the location of the main ionospheric trough. Geomagnetism and Aeronomy, 58 ( 3 ), 348 â 355. https://doi.org/10.1134/S0016793218030064
dc.identifier.citedreferenceEmmert, J. T., Faivre, M. L., Hernandez, G., Jarvis, M. J., Meriwether, J. W., Niciejewski, R. J., Sipler, D. P., & Tepley, C. A. ( 2006 ). Climatologies of nighttime upper thermospheric winds measured by groundâ based Fabryâ Perot interferometers during geomagnetically quiet conditions: 1. Local time, latitudinal, seasonal, and solar cycle dependence. Journal of Geophysical Research, 111, A12302. https://doi.org/10.1029/2006JA011948
dc.identifier.citedreferenceEmmert, J. T., Fejer, B. G., & Sipler, D. P. ( 2003 ). Climatology and latitudinal gradients of quiet time thermospheric neutral winds over Millstone Hill from Fabryâ Perot interferometer measurements. Journal of Geophysical Research, 108 ( A5 ), 1196. https://doi.org/10.1029/2002JA009765
dc.identifier.citedreferenceErickson, P. J., Beroz, F., & Miskin, M. Z. ( 2011 ). Statistical characterization of the American sector subauroral polarization stream using incoherent scatter radar. Journal of Geophysical Research, 116, A00J21. https://doi.org/10.1029/2010JA015738
dc.identifier.citedreferenceFoster, J. C., & Burke, W. J. ( 2002 ). SAPS: A new categorization for subâ auroral electric fields. EOS Transactions, 83 ( 36 ), 393. https://doi.org/10.1029/2002EO000289
dc.identifier.citedreferenceFoster, J. C., & Vo, H. B. ( 2002 ). Average characteristics and activity dependence of the subauroral polarization stream. Journal of Geophysical Research, 107 ( A12 ), 1475. https://doi.org/10.1029/2002JA009409
dc.identifier.citedreferenceGoldstein, J., Burch, J. L., & Sandel, B. R. ( 2005 ). Magnetospheric model of subauroral polarization stream. Journal of Geophysical Research, 110, A09222. https://doi.org/10.1029/2005JA011135
dc.identifier.citedreferenceGrebowsky, J. M., Taylor, H. A. Jr., & Lindsay, J. M. ( 1983 ). Location and source of ionospheric high latitude troughs. Planetary and Space Science, 31 ( 1 ), 99 â 105. https://doi.org/10.1016/0032-0633(83)90034-X
dc.identifier.citedreferenceHarang, L. ( 1946 ). The mean field of disturbance of polar geomagnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 51 ( 3 ), 353. https://doi.org/10.1029/TE051i003p00353
dc.identifier.citedreferenceHardy, D. A., Gussenhoven, M. S., & Holeman, E. ( 1985 ). A statistical model of auroral electron precipitation. Journal of Geophysical Research, 90 ( A5 ), 4229 â 4248. https://doi.org/10.1029/JA090iA05p04229
dc.identifier.citedreferenceHe, M., Liu, L., Wan, W., & Zhao, B. ( 2011 ). A study on the nighttime midlatitude ionospheric trough. Journal of Geophysical Research, 116, A05315. https://doi.org/10.1029/2010JA016252
dc.identifier.citedreferenceHolt, J. M., Evans, J. V., & Wand, R. H. ( 1983 ). Millstone Hill studies of the troughâ Boundary between the plasmapause and magnetosphere or not? Radio Science, 18, 947 â 954. https://doi.org/10.1029/RS018i006p00947
dc.identifier.citedreferenceHorvath, I. ( 2006 ). A total electron content space weather study of the nighttime Weddell Sea Anomaly of 1996/1997 southern summer with TOPEX/Poseidon radar altimetry. Journal of Geophysical Research, 111, A12317. https://doi.org/10.1029/2006JA011679
dc.identifier.citedreferenceHorvath, I., & Essex, E. A. ( 2003a ). The Weddell sea anomaly observed with the TOPEX satellite data. Journal of Atmospheric and Solarâ Terrestrial Physics, 65 ( 6 ), 693 â 706. https://doi.org/10.1016/S1364-6826(03)00083-X
dc.identifier.citedreferenceHorvath, I., & Essex, E. A. ( 2003b ). The Southernâ Hemisphere midâ latitude dayâ time and nightâ time trough at lowâ sunspot numbers. Journal of Atmospheric and Solarâ Terrestrial Physics, 65 ( 8 ), 917 â 940. https://doi.org/10.1016/S1364-6826(03)00113-5
dc.identifier.citedreferenceHorvath, I., & Lovell, B. C. ( 2009a ). An investigation of the Northern Hemisphere midlatitude nighttime plasma density enhancements and their relations to the midlatitude nighttime trough during summer. Journal of Geophysical Research, 114, A08308. https://doi.org/10.1029/2009JA014094
dc.identifier.citedreferenceHorvath, I., & Lovell, B. C. ( 2009b ). Investigating the relationships among the South Atlantic Magnetic Anomaly, southern nighttime midlatitude trough, and nighttime Weddell Sea Anomaly during southern summer. Journal of Geophysical Research, 114, A02306. https://doi.org/10.1029/2008JA013719
dc.identifier.citedreferenceHorvath, I., & Lovell, B. C. ( 2010 ). Investigating the southern daytime midlatitude trough’s relation with the daytime Weddell Sea Anomaly during equinoxes. Journal of Geophysical Research, 115, A01302. https://doi.org/10.1029/2008JA014002
dc.identifier.citedreferenceIshida, T., Ogawa, Y., Kadokura, A., Hiraki, Y., & Häggström, I. ( 2014 ). Seasonal variation and solar activity dependence of the quietâ time ionospheric trough. Journal of Geophysical Research: Space Physics, 119, 6774 â 6783. https://doi.org/10.1002/2014JA019996
dc.identifier.citedreferenceKarpachev, A. T. ( 2003 ). The dependence of the main ionospheric trough shape on longitude, altitude, season, local time, and solar and magnetic activity. Geomagnetism and Aeronomy, 43 ( 2 ), 239 â 251.
dc.identifier.citedreferenceKarpachev, A. T. ( 2019a ). Variations in the winter troughs’ position with local time, longitude, and solar activity in the Northern and Southern Hemispheres. Journal of Geophysical Research: Space Physics, 124, 8039 â 8055. https://doi.org/10.1029/2019JA026631
dc.identifier.citedreferenceKarpachev, A. T. ( 2019b ). Model of the ionospheric trough for daytime winter conditions based on data from Interkosmosâ 19 and Champ satellites. Geomagnetism and Aeronomy, 59 ( 4 ), 383 â 397. https://doi.org/10.1134/S0016793219040091
dc.identifier.citedreferenceKarpachev, A. T., & Afonin, V. V. ( 1999 ). Longitudinal variations in the positions of daytime winter ionospheric troughs. Geomagnetism and Aeronomy, 39 ( 2 ), 194 â 200.
dc.identifier.citedreferenceKarpachev, A. T., Deminov, M. G., & Afonin, V. V. ( 1996 ). Model of the midâ latitude ionospheric trough on the base of Cosmosâ 900 and Intercosmosâ 19 satellites data. Advances in Space Research, 18 ( 6 ), 221 â 230. https://doi.org/10.1016/0273-1177(95)00928-0
dc.identifier.citedreferenceKarpachev, A. T., Deminov, M. G., & Afonin, V. V. ( 1998 ). Two branches of dayâ time winter ionospheric trough according to Cosmosâ 900 data at F 2â layer heights. Advances in Space Research, 22 ( 6 ), 877 â 882. https://doi.org/10.1016/S0273-1177(98)00117-3
dc.identifier.citedreferenceKarpachev, A. T., Gasilov, N. A., & Karpachev, O. A. ( 2011 ). Morphology and causes of the Weddell Sea anomaly. Geomagnetism and Aeronomy, 51 ( 6 ), 812 â 824. https://doi.org/10.1134/S0016793211050070
dc.identifier.citedreferenceKarpachev, A. T., Klimenko, M. V., & Klimenko, V. V. ( 2019 ). Longitudinal variations of the ionospheric trough position. Advances in Space Research, 63 ( 2 ), 950 â 966. https://doi.org/10.1016/j.asr.2018.09.038
dc.identifier.citedreferenceKarpachev, A. T., Klimenko, M. V., Klimenko, V. V., & Pustovalova, L. V. ( 2016 ). Empirical model of the main ionospheric trough for the nighttime winter conditions. Journal of Atmospheric and Solarâ Terrestrial Physics, 146, 149 â 159. https://doi.org/10.1016/j.jastp.2016.05.008
dc.identifier.citedreferenceKnudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R., Wahlund, J. E., Ã hlen, L., Smith, M., & Moffat, B. ( 2017 ). Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. Journal of Geophysical Research: Space Physics, 122, 2655 â 2673. https://doi.org/10.1002/2016JA022571
dc.identifier.citedreferenceKoehnlein, W., & Raitt, W. J. ( 1977 ). Position of the midâ latitude trough in the topside ionosphere as deduced from ESRO 4 observations. Planetary and Space Science, 25 ( 6 ), 600 â 602. https://doi.org/10.1016/0032-0633(77)90069-1
dc.identifier.citedreferenceKrankowski, A., Shagimuratov, I. I., Ephishov, I. I., Krypiakâ Gregorczyk, A., & Yakimova, G. ( 2009 ). The occurrence of the midâ latitude ionospheric trough in GPSâ TEC measurements. Advances in Space Research, 43 ( 11 ), 1721 â 1731. https://doi.org/10.1016/j.asr.2008.05.014
dc.identifier.citedreferenceKunduri, B. S. R., Baker, J. B. H., Ruohoniemi, J. M., Nishitani, N., Oksavik, K., Erickson, P. J., Coster, A. J., Shepherd, S. G., Bristow, W. A., & Miller, E. S. ( 2018 ). A New empirical model of the subauroral polarization stream. Journal of Geophysical Research: Space Physics, 123, 7342 â 7357. https://doi.org/10.1029/2018JA025690
dc.identifier.citedreferenceKunduri, B. S. R., Baker, J. B. H., Ruohoniemi, J. M., Thomas, E. G., Shepherd, S. G., & Sterne, K. T. ( 2017 ). Statistical characterization of the largeâ scale structure of the subauroral polarization stream. Journal of Geophysical Research: Space Physics, 122, 6035 â 6048. https://doi.org/10.1002/2017JA024131
dc.identifier.citedreferenceLandry, R. G., & Anderson, P. C. ( 2019 ). Empirical modeling of the equatorward boundary of auroral precipitation using DMSP and DE 2. Journal of Geophysical Research: Space Physics, 124, 2072 â 2082. https://doi.org/10.1029/2018JA025451
dc.identifier.citedreferenceLe, H., Yang, N., Liu, L., Chen, Y., & Zhang, H. ( 2017 ). The latitudinal structure of nighttime ionospheric TEC and its empirical orthogonal functions model over North American sector. Journal of Geophysical Research: Space Physics, 122, 963 â 977. https://doi.org/10.1002/2016JA023361
dc.identifier.citedreferenceLee, I. T., Wang, W., Liu, J. Y., Chen, C. Y., & Lin, C. H. ( 2011 ). The ionospheric midlatitude trough observed by FORMOSATâ 3/COSMIC during solar minimum. Journal of Geophysical Research, 116, A06311. https://doi.org/10.1029/2010JA015544
dc.identifier.citedreferenceLyatsky, W., Newell, P. T., & Hamza, A. ( 2001 ). Solar illumination as cause of the equinoctial preference for geomagnetic activity. Geophysical Research Letters, 28 ( 12 ), 2353 â 2356. https://doi.org/10.1029/2000GL012803
dc.identifier.citedreferenceMallis, M., & Essex, E. A. ( 1993 ). Diurnal and seasonal variability of the Southernâ Hemisphere main ionospheric trough from differentialâ phase measurements. Journal of Atmospheric and Terrestrial Physics, 55 ( 7 ), 1021 â 1037. https://doi.org/10.1016/0021-9169(93)90095-G
dc.identifier.citedreferenceMoffett, R. J., & Quegan, S. ( 1983 ). The midâ latitude trough in the electron concentration of the ionospheric F â layerâ A review of observations and modelling. Journal of Atmospheric and Terrestrial Physics, 45, 315 â 343. https://doi.org/10.1016/S0021-9169(83)80038-5
dc.identifier.citedreferenceMuldrew, D. B. ( 1965 ). Fâ layer ionization troughs deduced from Alouette data. Journal of Geophysical Research, 70 ( 11 ), 2635 â 2650. https://doi.org/10.1029/JZ070i011p02635
dc.identifier.citedreferenceNilsson, H., Sergienko, T. I., Ebihara, Y., & Yamauchi, M. ( 2005 ). Quietâ time midâ latitude trough: Influence of convection, fieldâ aligned currents and proton precipitation. Annales Geophysicae, 23 ( 10 ), 3277 â 3288. https://doi.org/10.5194/angeo-23-3277-2005
dc.identifier.citedreferenceOksman, J. ( 1982 ). Apparent diurnal movements of the trough in total electron content (TEC) of the ionosphere. Geophysica, 19 ( 1 ), 13 â 22.
dc.identifier.citedreferenceParker, J., Eleri Pryse, S., Jacksonâ Booth, N., & Buckland, R. ( 2018 ). Modelling the main ionospheric trough using the Electron Density Assimilative Model (EDAM) with assimilated GPS TEC. Annales Geophysicae, 36 ( 1 ), 125 â 138. https://doi.org/10.5194/angeo-36-125-2018
dc.identifier.citedreferencePierrard, V., & Voiculescu, M. ( 2011 ). The 3D model of the plasmasphere coupled to the ionosphere. Geophysical Research Letters, 38, L12104. https://doi.org/10.1029/2011GL047767
dc.identifier.citedreferencePrölss, G. W. ( 2007 ). The equatorward wall of the subauroral trough in the afternoon/evening sector. Annales Geophysicae, 25 ( 3 ), 645 â 659. https://doi.org/10.5194/angeo-25-645-2007
dc.identifier.citedreferencePryse, S. E. ( 2003 ). Radio tomography: A new experimental technique. Surveys in Geophysics, 24 ( 1 ), 1 â 38.
dc.identifier.citedreferencePryse, S. E., Kersley, L., Malan, D., & Bishop, G. J. ( 2006 ). Parameterization of the main ionospheric trough in the European sector. Radio Science, 41, RS5S14. https://doi.org/10.1029/2005RS003364
dc.identifier.citedreferencePryse, S. E., Kersley, L., Williams, M. J., & Walker, I. K. ( 1998 ). The spatial structure of the dayside ionospheric trough. Annales Geophysicae, 16 ( 10 ), 1169 â 1179. https://doi.org/10.1007/s00585-998-1169-4
dc.identifier.citedreferenceRodger, A. S. ( 2008 ). The midâ latitude troughâ Revisited. Washington DC American Geophysical Union Geophysical Monograph Series, 181, 25 â 33. https://doi.org/10.1029/181GM04
dc.identifier.citedreferenceRodger, A. S., Brace, L. H., Hoegy, W. R., & Winningham, J. D. ( 1986 ). The poleward edge of the midâ latitude troughâ Its formation, orientation and dynamics. Journal of Atmospheric and Terrestrial Physics, 48, 715 â 728. https://doi.org/10.1016/0021-9169(86)90021-8
dc.identifier.citedreferenceRodger, A. S., Moffett, R. J., & Quegan, S. ( 1992 ). The role of ion drift in the formation of ionisation troughs in the midâ and highâ latitude ionosphereâ A review. Journal of Atmospheric and Terrestrial Physics, 54, 1 â 30. https://doi.org/10.1016/0021-9169(92)90082-V
dc.identifier.citedreferenceRussell, C. T., & McPherron, R. L. ( 1973 ). Semiannual variation of geomagnetic activity. Journal of Geophysical Research, 78 ( 1 ), 92. https://doi.org/10.1029/JA078i001p00092
dc.identifier.citedreferenceSchunk, R. W., Banks, P. M., & Raitt, W. J. ( 1976 ). Effects of electric fields and other processes upon the nighttime highâ latitude F layer. Journal of Geophysical Research, 81 ( 19 ), 3271. https://doi.org/10.1029/JA081i019p03271
dc.identifier.citedreferenceSchunk, R. W., & Nagy, A. F. ( 2000 ). Ionospheres: Physics, plasma physics, and chemistry. New York: Cambridge University Press.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.