Show simple item record

Regulation of hepatic autophagy by stress‐sensing transcription factor CREBH

dc.contributor.authorKim, Hyunbae
dc.contributor.authorWilliams, Dreana
dc.contributor.authorQiu, Yining
dc.contributor.authorSong, Zhenfeng
dc.contributor.authorYang, Zhao
dc.contributor.authorKimler, Victoria
dc.contributor.authorGoldberg, Andrew
dc.contributor.authorZhang, Ren
dc.contributor.authorYang, Zengquann
dc.contributor.authorChen, Xuequn
dc.contributor.authorWang, Li
dc.contributor.authorFang, Deyu
dc.contributor.authorLin, Jiandie D.
dc.contributor.authorZhang, Kezhong
dc.date.accessioned2020-03-17T18:31:57Z
dc.date.availableWITHHELD_5_MONTHS
dc.date.available2020-03-17T18:31:57Z
dc.date.issued2019-07
dc.identifier.citationKim, Hyunbae; Williams, Dreana; Qiu, Yining; Song, Zhenfeng; Yang, Zhao; Kimler, Victoria; Goldberg, Andrew; Zhang, Ren; Yang, Zengquann; Chen, Xuequn; Wang, Li; Fang, Deyu; Lin, Jiandie D.; Zhang, Kezhong (2019). "Regulation of hepatic autophagy by stress‐sensing transcription factor CREBH." The FASEB Journal 33(7): 7896-7914.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154423
dc.description.abstractAutophagy, a lysosomal degradative pathway in response to nutrient limitation, plays an important regulatory role in lipid homeostasis upon energy demands. Here, we demonstrated that the endoplasmic reticulum–tethered, stress‐sensing transcription factor cAMP‐responsive element‐binding protein, hepatic‐specific (CREBH) functions as a major transcriptional regulator of hepatic autophagy and lysosomal biogenesis in response to nutritional or circadian signals. CREBH deficiency led to decreased hepatic autophagic activities and increased hepatic lipid accumulation upon starvation. Under unfed or during energy‐demanding phases of the circadian cycle, CREBH is activated to drive expression of the genes encoding the key enzymes or regulators in autophagosome formation or autophagic process, including microtubule‐associated protein IB‐light chain 3, autophagy‐related protein (ATG)7, ATG2b, and autophagosome formation Unc‐51 like kinase 1, and the genes encoding functions in lysosomal biogenesis and homeostasis. Upon nutrient starvation, CREBH regulates and interacts with peroxisome proliferator–activated receptor α (PPARα) and PPARγ coactivator 1α to synergistically drive expression of the key autophagy genes and transcription factor EB, a master regulator of lysosomal biogenesis. Furthermore, CREBH regulates rhythmic expression of the key autophagy genes in the liver in a circadian‐dependent manner. In summary, we identified CREBH as a key transcriptional regulator of hepatic autophagy and lysosomal biogenesis for the purpose of maintaining hepatic lipid homeostasis under nutritional stress or circadian oscillation.—Kim, H., Williams, D., Qiu, Y., Song, Z., Yang, Z., Kimler, V., Goldberg, A., Zhang, R., Yang, Z., Chen, X., Wang, L., Fang, D., Lin, J. D., Zhang, K. Regulation of hepatic autophagy by stress‐sensing transcription factor CREBH. FASEB J. 33, 7896–7914 (2019). www.fasebj.org
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.othertranscriptional regulation
dc.subject.otherhepatic lipid homeostasis
dc.subject.otherstress response
dc.titleRegulation of hepatic autophagy by stress‐sensing transcription factor CREBH
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154423/1/fsb2fj201802528r-sup-0001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154423/2/fsb2fj201802528r.pdf
dc.identifier.doi10.1096/fj.201802528R
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceTanida, I., Ueno, T., and Kominami, E. ( 2008 ) LC3 and autophagy. Methods Mol. Biol. 445, 77 – 88
dc.identifier.citedreferenceYang, L., Li, P., Fu, S., Calay, E. S., and Hotamisligil, G. S. ( 2010 ) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467 – 478
dc.identifier.citedreferenceYamamoto, S., Kuramoto, K., Wang, N., Situ, X., Priyadarshini, M., Zhang, W., Cordoba-Chacon, J., Layden, B. T., and He, C. ( 2018 ) Autophagy differentially regulates insulin production and insulin sensitivity. Cell Rep. 23, 3286 – 3299
dc.identifier.citedreferencePietrocola, F., Izzo, V., Niso-Santano, M., Vacchelli, E., Galluzzi, L., Maiuri, M. C., and Kroemer, G. ( 2013 ) Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol. 23, 310 – 322
dc.identifier.citedreferenceFüllgrabe, J., Klionsky, D. J., and Joseph, B. ( 2014 ) The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 15, 65 – 74
dc.identifier.citedreferenceLee, J. M., Wagner, M., Xiao, R., Kim, K. H., Feng, D., Lazar, M. A., and Moore, D. D. ( 2014 ) Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112 – 115
dc.identifier.citedreferenceSeok, S., Fu, T., Choi, S. E., Li, Y., Zhu, R., Kumar, S., Sun, X., Yoon, G., Kang, Y., Zhong, W., Ma, J., Kemper, B., and Kemper, J. K. ( 2014 ) Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516, 108 – 111
dc.identifier.citedreferenceLiu, K., and Czaja, M. J. ( 2013 ) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3 – 11
dc.identifier.citedreferenceSinha, R. A., Farah, B. L., Singh, B. K., Siddique, M. M., Li, Y., Wu, Y., Ilkayeva, O. R., Gooding, J., Ching, J., Zhou, J., Martinez, L., Xie, S., Bay, B. H., Summers, S. A., Newgard, C. B., and Yen, P. M. ( 2014 ) Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatobgy 59, 1366 – 1380
dc.identifier.citedreferenceZhang, K., Shen, X., Wu, J., Sakaki, K., Saunders, T., Rutkowski, D. T., Back, S. H., and Kaufman, R. J. ( 2006 ) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587 – 599
dc.identifier.citedreferenceOmori, Y., Imai, J., Watanabe, M., Komatsu, T., Suzuki, Y., Kataoka, K., Watanabe, S., Tanigami, A., and Sugano, S. ( 2001 ) CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Res. 29, 2154 – 2162
dc.identifier.citedreferenceLuebke-Wheeler, J., Zhang, K., Battle, M., Si-Tayeb, K., Garrison, W., Chhinder, S., Li, J., Kaufman, R. J., and Duncan, S. A. ( 2008 ) Hepatocyte nuclear factor 4alpha is implicated in endoplasmic reticulum stress-induced acute phase response by regulating expression of cyclic adenosine monophosphate responsive element binding protein H. Hepatology 48, 1242 – 1250
dc.identifier.citedreferenceZhang, C., Wang, G., Zheng, Z., Maddipati, K. R., Zhang, X., Dyson, G., Williams, P., Duncan, S. A., Kaufman, R. J., and Zhang, K. ( 2012 ) Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatobgy 55, 1070 – 1082
dc.identifier.citedreferenceKim, H., Mendez, R., Zheng, Z., Chang, L., Cai, J., Zhang, R., and Zhang, K. ( 2014 ) Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor α to regulate metabolic hormone FGF21. Endocrinology 155, 769 – 782
dc.identifier.citedreferenceZheng, Z., Kim, H., Qiu, Y., Chen, X., Mendez, R., Dandekar, A., Zhang, X., Zhang, C., Liu, A. C., Yin, L., Lin, J. D., Walker, P. D., Kapatos, G., and Zhang, K. ( 2016 ) CREBH couples circadian clock with hepatic lipid metabolism. Diabetes 65, 3369 – 3383
dc.identifier.citedreferenceKim, H., Zheng, Z., Walker, P. D., Kapatos, G., and Zhang, K. ( 2017 ) CREBH maintains circadian glucose homeostasis by regulating hepatic glycogenolysis and gluconeogenesis. Mol. Cell. Biol. 37, e00048 – 17
dc.identifier.citedreferenceLee, M. W., Chanda, D., Yang, J., Oh, H., Kim, S. S., Yoon, Y. S., Hong, S., Park, K. G., Lee, I. K., Choi, C. S., Hanson, R. W., Choi, H. S., and Koo, S. H. ( 2010 ) Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab. 11, 331 – 339
dc.identifier.citedreferenceKim, H., Mendez, R., Chen, X., Fang, D., and Zhang, K. ( 2015 ) Lysine acetylation of CREBH regulates fasting-induced hepatic lipid metabolism. Mol. Cell. Biol. 35, 4121 – 4134
dc.identifier.citedreferenceLee, J. H., Giannikopoulos, P., Duncan, S. A., Wang, J., Johansen, C. T., Brown, J. D., Plutzky, J., Hegele, R. A., Glimcher, L. H., and Lee, A. H. ( 2011 ) The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat. Med. 17, 812 – 815
dc.identifier.citedreferenceJohansen, C. T., Wang, J., McIntyre, A. D., Martins, R. A., Ban, M. R., Lanktree, M. B., Huff, M. W., Péterfy, M., Mehrabian, M., Lusis, A. J., Kathiresan, S., Anand, S. S., Yusuf, S., Lee, A. H., Glimcher, L. H., Cao, H., and Hegele, R. A. ( 2012 ) Excess of rare variants in non-genome-wide association study candidate genes in patients with hypertriglyceridemia. Circ. Cardiovasc. Genet. 5, 66 – 72
dc.identifier.citedreferenceCefalù, A. B., Spina, R., Noto, D., Valenti, V., Ingrassia, V., Giammanco, A., Panno, M. D., Ganci, A., Barbagallo, C. M., and Averna, M. R. ( 2015 ) Novel CREB3L3 nonsense mutation in a family with dominant hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 35, 269 – 2699
dc.identifier.citedreferenceRabinowitz, J. D., and White, E. ( 2010 ) Autophagy and metabolism. Science 330, 1344 – 1348
dc.identifier.citedreferenceHaspel, J., Shaik, R. S., Ifedigbo, E., Nakahira, K., Dolinay, T., Englert, J. A., and Choi, A. M. ( 2011 ) Characterization of macroautophagic flux in vivo using a leupeptin-based assay. Autophagy 7, 629 – 642
dc.identifier.citedreferenceKomatsu, M., Waguri, S., Koike, M., Sou, Y. S., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S., Hamazaki, J., Nishito, Y., Iemura, S., Natsume, T., Yanagawa, T., Uwayama, J., Warabi, E., Yoshida, H., Ishii, T., Kobayashi, A., Yamamoto, M., Yue, Z., Uchiyama, Y., Kominami, E., and Tanaka, K. ( 2007 ) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149 – 1163
dc.identifier.citedreferenceFinck, B. N., and Kelly, D. P. ( 2006 ) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615 – 622
dc.identifier.citedreferenceGhosh, A., Jana, M., Modi, K., Gonzalez, F. J., Sims, K. B., Berry-Kravis, E., and Pahan, K. ( 2015 ) Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J. Biol. Chem. 290, 10309 – 10324
dc.identifier.citedreferenceSettembre, C., Di Malta, C., Polito, V. A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S. U., Huynh, T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D. C., and Ballabio, A. ( 2011 ) TFEB links autophagy to lysosomal biogenesis. Science 332, 1429 – 1433
dc.identifier.citedreferenceSettembre, C., De Cegli, R., Mansueto, G., Saha, P. K., Vetrini, F., Visvikis, O., Huynh, T., Carissimo, A., Palmer, D., Klisch, T. J., Wollenberg, A. C., Di Bernardo, D., Chan, L., Irazoqui, J. E., and Ballabio, A. ( 2013 ) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647 – 658; erratum: 1016
dc.identifier.citedreferenceLowrey, P. L., and Takahashi, J. S. ( 2004 ) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407 – 441
dc.identifier.citedreferenceBalsalobre, A., Damiola, F., and Schibier, U. ( 1998 ) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929 – 937
dc.identifier.citedreferenceMa, D., Panda, S., and Lin, J. D. ( 2011 ) Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J. 30, 4642 – 4651
dc.identifier.citedreferenceHolen, I., Gordon, P. B., Strømhaug, P. E., and Seglen, P. O. ( 1996 ) Role of cAMP in the regulation of hepatocytic autophagy. Eur. J. Biochem. 236, 163 – 170
dc.identifier.citedreferenceAvila, D. V., Barker, D. F., Zhang, J., McClain, C. J., Barve, S., and Gobejishvili, L. ( 2016 ) Dysregulation of hepatic cAMP levels via altered Pde4b expression plays a critical role in alcohol-induced steatosis. J. Pathol. 240, 96 – 107
dc.identifier.citedreferenceLamb, C. A., Yoshimori, T., and Tooze, S. A. ( 2013 ) The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759 – 774
dc.identifier.citedreferenceYlä-Anttila, P., Vihinen, H., Jokitalo, E., and Eskelinen, E. L. ( 2009 ) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180 – 1185
dc.identifier.citedreferenceHailey, D. W., Rambold, A. S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P. K., and Lippincott-Schwartz, J. ( 2010 ) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656 – 667
dc.identifier.citedreferenceLi, W. W., Li, J., and Bao, J. K. ( 2012 ) Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125 – 1136
dc.identifier.citedreferenceSingh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M., and Czaja, M. J. ( 2009 ) Autophagy regulates lipid metabolism. Nature 458, 1131 – 1135
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.