Show simple item record

High‐Resolution Numerical Modeling of Heat and Volatile Transfer from Basalt to Wall Rock: Application to the Crustal Column beneath Long Valley Caldera, CA

dc.contributor.authorCalogero, M.A.
dc.contributor.authorHetland, E. A.
dc.contributor.authorLange, R. A.
dc.date.accessioned2020-03-17T18:32:01Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:32:01Z
dc.date.issued2020-03
dc.identifier.citationCalogero, M. A. ; Hetland, E. A. ; Lange, R. A. (2020). "High‐Resolution Numerical Modeling of Heat and Volatile Transfer from Basalt to Wall Rock: Application to the Crustal Column beneath Long Valley Caldera, CA." Journal of Geophysical Research: Solid Earth 125(3): n/a-n/a.
dc.identifier.issn2169-9313
dc.identifier.issn2169-9356
dc.identifier.urihttps://hdl.handle.net/2027.42/154427
dc.description.abstractWe present a high‐resolution numerical model of the thermal evolution of the crustal column beneath Long Valley caldera, California, from which >800 km3 rhyolite erupted over the last 2.2 Myr. We examine how randomly emplaced basaltic sills of variable thickness (10, 50, or 100 m) at various depth intervals (10–25 km) and at variable emplacement rates (5–50 m/kyr) gradually heat the crust and lead to a variably mixed crustal lithology (solidified mafic sills and preexisting granitoid). We additionally explore the time scales over which dissolved water (~3 wt%) in a newly emplaced basaltic sill exsolves during crystallization and is transferred to adjacent wall rock that is undergoing partial melting. We employ a finite‐difference‐based technique, with variable spatial (≥1 m to ≥10 km) and temporal (<100 and > 106 years) resolution, that enables dense analysis within and directly adjacent to a newly emplaced sill. Our results show that once ambient crustal temperatures reach ~500–600 °C, subsequent injections of basaltic sills lead to significant partial melting of adjacent wall rock (granitoid and solidified mafic sills) on time scales (101–102 years) that match those of exsolution of H2O‐rich fluid from basaltic sills. Large volumes of fusion (>10%) during fluid‐undersaturated partial melting, combined with the preexisting occurrence of aplite dikes, facilitates the development of melt‐filled fractures that exceed the critical length for self‐propagation. The advection of wall‐rock partial melts (with a combined mantle‐derived and crustal geochemical signature) to shallower depths will alter both the thermal and compositional profile of the middle‐upper crust.Key PointsA new high‐resolution numerical thermal model is presented, operating over broad spatial (≥1 m to ≥10 km) and temporal scales (<100 to >106 years)The time scale over which H2O‐rich fluid exsolves from a crystallizing basaltic sill matches that for transient heating of adjacent wall rockOnce ambient crust is ~600 °C, large melt fractions in wall rock (granitoid and mafic sills) adjacent to new basaltic sills may form and advect
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpartial melting
dc.subject.otherhigh‐resolution
dc.subject.othermagma emplacement
dc.subject.otherthermal modeling
dc.subject.othercrustal evolution
dc.titleHigh‐Resolution Numerical Modeling of Heat and Volatile Transfer from Basalt to Wall Rock: Application to the Crustal Column beneath Long Valley Caldera, CA
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154427/1/jgrb54059_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154427/2/jgrb54059.pdf
dc.identifier.doi10.1029/2018JB016773
dc.identifier.sourceJournal of Geophysical Research: Solid Earth
dc.identifier.citedreferenceOliver, H. W., Moore, J. G., & Sikora, R. F. ( 1993 ). Internal structure of the Sierra Nevada batholith based on specific gravity and gravity measurements. Geophysical Research Letters, 20 ( 20 ), 2179 – 2182. https://doi.org/10.1029/93GL01379
dc.identifier.citedreferenceLim, S. H., Hetland, E. A., & Lange, R. A. ( 2012 ). Numerical models of transient partial melting of the lower crust during repeated emplacement of basalt sills and subsequent cooling due to advection of melt out of the lower crust. Abstract T31G‐2708. Presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3‐7 Dec.
dc.identifier.citedreferenceManley, C. R., Glazner, A. F., & Farmer, G. L. ( 2000 ). Timing of volcanism in the Sierra Nevada of California: Evidence for Pliocene delamination of the basaltic root? Geology, 28 ( 9 ), 811 – 814. https://doi.org/10.1130/0091‐7613(2000)28<811:TOVITS>2.0.CO;2
dc.identifier.citedreferenceMetz, J. M., & Mahood, G. A. ( 1991 ). Development of the Long Valley, California, magma chamber recorded in precaldera rhyolite lavas of Glass Mountain. Contributions to Mineralogy and Petrology, 106 ( 3 ), 379 – 397. https://doi.org/10.1007/BF00324565
dc.identifier.citedreferenceNoda, H., Dunham, E., & Rice, J. ( 2009 ). Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. Journal of Geophysical Research, 114, B07302. https://doi.org/10.1029/2008JB006143
dc.identifier.citedreferenceOchs, F. A., & Lange, R. A. ( 1999 ). The density of hydrous magmatic liquids. Science, 283 ( 5406 ), 1314 – 1317. https://doi.org/10.1126/science.283.5406.1314
dc.identifier.citedreferencePetford, N., & Gallagher, K. ( 2001 ). Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters, 193 ( 3‐4 ), 483 – 499. https://doi.org/10.1016/S0012‐821X(01)00481‐2
dc.identifier.citedreferenceRudnick, R. L., & Gao, S. ( 2014 ). Composition of the continental crust. In Treatise on Geochemistry ( 2nd ed., Vol. 4, pp. 1 – 51 ). Amsterdam: Elsevier. https://doi.org/10.1016/B978‐0‐08‐095975‐7.00301‐6
dc.identifier.citedreferenceRushmer, T. ( 2001 ). Volume change during partial melting reactions: Implications for melt extraction, melt geochemistry and crustal rheology. Tectonophysics, 342, 389 – 405. https://doi.org/10.1016/S0040‐1951(01)00172‐X
dc.identifier.citedreferenceSaleeby, J., Ducea, M., & Clemens‐Knott, D. ( 2003 ). Production and loss of high‐density batholitic root, southern Sierra Nevada, California. Tectonics, 22 ( 6 ), 1064. https://doi.org/10.1029/2002TC001374
dc.identifier.citedreferenceShaw, H. R. ( 1980 ). Chapter 6. The fracture mechanisms of magma transport from the mantle to the surface. In Physics of magmatic processes (pp. 201 – 264 ). https://doi.org/10.1515/9781400854493.201
dc.identifier.citedreferenceSimakin, A. G., & Bindeman, I. N. ( 2012 ). Remelting in caldera and rift environments and the genesis of hot, “recycled” rhyolites. Earth and Planetary Science Letters, 337‐338, 224 – 235. https://doi.org/10.1016/j.epsl.2012.04.011
dc.identifier.citedreferenceSimon, J. I., Weis, D., DePaolo, D. J., Renne, P. R., Mundil, R., & Schmitt, A. K. ( 2014 ). Assimilation of preexisting Pleistocene intrusions at Long Valley by periodic magma recharge accelerates rhyolite generation: Rethinking the remelting model. Contributions to Mineralogy and Petrology, 167 ( 1 ), 1 – 34. https://doi.org/10.1007/s00410‐013‐0955‐5
dc.identifier.citedreferenceSleep, N. H. ( 1988 ). Tapping of melt by veins and dikes. Journal of Geophysical Research, 93 ( B9 ), 10,255 – 10,272. https://doi.org/10.1029/jb093ib09p10255
dc.identifier.citedreferenceSpera, F. J., & Bohrson, W. A. ( 2018 ). Rejuvenation of crustal magma mush: A tale of multiply nested processes and timescales. American Journal of Science, 318, 90 – 140. https://doi.org/10.2475/01.2018.05
dc.identifier.citedreferenceStachnik, J. C., Dueker, K., Schutt, D. L., & Yuan, H. ( 2008 ). Imaging Yellowstone plume‐lithosphere interactions from inversion of ballistic and diffusive Rayleigh wave dispersion and crustal thickness data. Geochemistry, Geophysics, Geosystems, 9, Q06004. https://doi.org/10.1029/2008GC001992
dc.identifier.citedreferenceThurber, C., Zhang, H., Brocher, T., & Langenheim, V. ( 2009 ). Regional three‐dimensional seismic velocity model of the crust and uppermost mantle of northern California. Journal of Geophysical Research, 114, B01304. https://doi.org/10.1029/2008JB005766
dc.identifier.citedreferenceWallace, P. J., Anderson, A. T., & Davis, A. M. ( 1999 ). Gradients in H 2 O, CO 2, and exsolved gas in a large‐volume silicic magma system: Interpreting the record preserved in melt inclusions from the Bishop Tuff. Journal of Geophysical Research, 104 ( B9 ), 20,097 – 20,122. https://doi.org/10.1029/1999JB900207
dc.identifier.citedreferenceWaters, L. E., & Lange, R. A. ( 2017 ). Why aplites freeze and rhyolites erupt: Controls on the accumulation and eruption of high‐SiO2 (eutectic) melts. Geology, 45 ( 11 ), 1019 – 1022. https://doi.org/10.1130/g39373.1
dc.identifier.citedreferenceWilson, C. J. N., & Hildreth, W. ( 1997 ). The Bishop Tuff: New insights from eruptive stratigraphy. The Journal of Geology, 105 ( 4 ), 407 – 440. https://doi.org/10.1086/515937
dc.identifier.citedreferenceYuan, H., Dueker, K., & Stachnik, J. ( 2010 ). Crustal structure and thickness along the Yellowstone hot spot track: Evidence for lower crustal outflow from beneath the eastern Snake River Plain. Geochemistry, Geophysics, Geosystems, 11, Q03009. https://doi.org/10.1029/2009GC002787
dc.identifier.citedreferenceZandt, G., Hersh, G., Owens, T. J., Ducea, M., Saleeby, J., & Jones, C. H. ( 2004 ). Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature, 431 ( 7004 ), 41 – 46. https://doi.org/10.1038/nature02847
dc.identifier.citedreferenceZhang, Y., Xu, Z., Zhu, M., & Wang, H. ( 2007 ). Silicate melt properties and volcanic eruptions. Reviews of Geophysics, 45, RG4004. https://doi.org/10.1029/2006RG000216
dc.identifier.citedreferenceAndersen, N. L., Jicha, B. R., Singer, B. S., & Hildreth, W. ( 2017 ). Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 47 ), 12,407 – 12,412. https://doi.org/10.1073/pnas.1709581114
dc.identifier.citedreferenceAnderson, A. T., Davis, A. M., & Lu, F. ( 2000 ). Evolution of Bishop Tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts. Journal of Petrology, 41 ( 3 ), 449 – 473. https://doi.org/10.1093/petrology/41.3.449
dc.identifier.citedreferenceAnnen, C. ( 2017 ). Factors affecting the thickness of thermal aureoles. Frontiers in Earth Science, 5, 82. https://doi.org/10.3389/feart.2017.00082
dc.identifier.citedreferenceAnnen, C., Blundy, J. D., & Sparks, R. S. J. ( 2006 ). The genesis of intermediate silicic magmas in deep crustal hot zones. Journal of Petrology, 47 ( 3 ), 505 – 539. http://doi.org/10.1093/petrology/egi084
dc.identifier.citedreferenceBachmann, O., & Bergantz, G. W. ( 2006 ). Gas percolation in upper‐crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near‐solidus magma bodies. Journal of Volcanology and Geothermal Research, 149, 85 – 102. https://doi.org/10.1016/j.jvolgeores.2005.06.002
dc.identifier.citedreferenceBailey, R. A. ( 1989 ). Geologic map of the Long Valley caldera, Mono‐Inyo craters volcanic chain, and vicinity, eastern California. U.S. Geological Survey Map I‐1933. https://doi.org/10.3133/i1933
dc.identifier.citedreferenceBateman, P. C. ( 1992 ). Plutonism in the central part of the Sierra Nevada batholith, California. U.S. Geological Survey Professional Paper, 1483, 1 – 186.
dc.identifier.citedreferenceBehrens, H., Meyer, M., Holtz, F., Benne, D., & Nowak, M. ( 2001 ). The effect of alkali ionic radius, temperature, and pressure on solubility of water in MAlSi 3 O 8 melts (M = Li, Na, K, Rb). Chemical Geology, 174, 275 – 289. http://doi.org/10.1016/S0009‐2541(00)00320‐X
dc.identifier.citedreferenceBindeman, I. N., & Simakin, A. G. ( 2014 ). Rhyolites—Hard to produce, but easy to recycle and sequester: Integrating microgeochemical observations and numerical models. Geopshere, 10 ( 5 ), 930 – 957. https://doi.org/10.1130/GES00969.1
dc.identifier.citedreferenceBohrson, W. A., & Spera, F. J. ( 2001 ). Energy‐constrained open system magmatic processes II: Application of energy‐constrained assimilation–fractional crystallization (EC‐AFC) model to magmatic systems. Journal of Petrology, 42, 1019 – 1041. https://doi.org/10.1093/petrology/42.5.1019
dc.identifier.citedreferenceBurnham, C. W., Holloway, J. R., & Davis, N. F. ( 1969 ). Thermodynamic properties of water to 1000 °C and 10,000 bars. Research and Development Progress Report No. 414, US Department of the Interior. https://doi.org/10.1130/SPE132
dc.identifier.citedreferenceChapman, D. S., & Furlong, K. P. ( 1992 ). Thermal state of the continental lower crust. In D. M. Fountain, R. Arculus, & R. W. Kay (Eds.), Continental lower crust. Developments in geotectonics (Vol. 23, pp. 179 – 199 ). Amsterdam: Elsevier.
dc.identifier.citedreferenceChristiansen, R. L. ( 2001 ). The Quaternary and Pliocene Yellowstone volcanic field of Wyoming, Idaho, and Montana. US Geological Survey Professional Paper, 729 ( G ), G1 – G145. https://doi.org/10.3133/pp729G
dc.identifier.citedreferenceColeman, D. S., Bartley, J. M., Glazner, A. F., & Pardue, M. J. ( 2012 ). Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow‐crustal differentiation? Geosphere, 8 ( 6 ), 1568 – 1587.
dc.identifier.citedreferenceColón, D. P., Bindeman, I. N., & Gerya, T. V. ( 2018 ). Thermomechanical modeling of the formation of a multilevel, crustal‐scale magmatic system by the Yellowstone plume. Geophysical Research Letters, 45, 3873 – 3879. https://doi.org/10.1029/2018GL077090
dc.identifier.citedreferenceConnolly, J. A. D., Holness, M. B., Rubie, D., & Rushmer, T. ( 1997 ). Reaction‐induced microcraking: An experimental investigation of a mechanism for enhancing anatectic melt extraction. Geology, 25, 591 – 594. http://doi.org/10.1130/0091‐7613(1997)025<0591:RIMAEI>2.3.CO
dc.identifier.citedreferenceCousens, B. L. ( 1996 ). Magmatic evolution of Quaternary mafic magmas at Long Valley caldera and the Devils Postpile, California: Effects of crustal contamination on lithospheric mantle‐derived magmas. Journal of Geophysical Research, 101 ( B12 ), 27,673 – 27,689. https://doi.org/10.1029/96JB02093
dc.identifier.citedreferenceDavies, G. R., Halliday, A. N., Mahood, G. A., & Hall, C. M. ( 1994 ). Isotopic constraints on the production rates, crystallization histories and residence times of pre‐caldera silicic magmas, Long Valley, California. Earth and Planetary Science Letters, 125 ( 4 ), 17 – 37. https://doi.org/10.1016/0012‐821X(94)90204‐6
dc.identifier.citedreferenceDormand, J. ( 1996 ). Numerical methods for differential equations: A computational approach (p. 368 ). New York: CRC Press LLC.
dc.identifier.citedreferenceDu Bray, E. A., John, D. A., Cousens, B. L., Hayden, L. A., & Vikre, P. G. ( 2016 ). Geochemistry, petrologic evolution, and ore deposits of the Miocene Bodie Hills volcanic field, California and Nevada. American Mineralogist, 101 ( 3 ), 644 – 677. https://doi.org/10.2138/am‐2016‐5440
dc.identifier.citedreferenceDufek, J., & Bergantz, G. W. ( 2005 ). Lower crustal magma genesis and preservation: A stochastic framework for the evaluation of basalt–crust interaction. Journal of Petrology, 46 ( 11 ), 2167 – 2195. https://doi.org/10.1093/petrology/egi049
dc.identifier.citedreferenceFliedner, M. M., Klemperer, S. L., & Christensen, N. I. ( 2000 ). Three‐dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition. Journal of Geophysical Research, 105 ( B5 ), 10,899 – 10,922. https://doi.org/10.1029/2000JB900029
dc.identifier.citedreferenceFlinders, A. F., Shelly, D. R., Dawson, P. B., Hill, D. P., Tripoli, B., & Shen, Y. ( 2018 ). Seismic evidence for significant melt beneath the Long Valley Caldera, California, USA. Geology, 46 ( 9 ), 799 – 802.
dc.identifier.citedreferenceFrassetto, A. M., Zandt, G., Gilbert, H., Owens, T. J., & Jones, C. H. ( 2011 ). Structure of the Sierra Nevada from receiver functions and implications for lithospheric foundering. Geosphere, 7 ( 4 ), 898 – 921. https://doi.org/10.1130/GES00570.1
dc.identifier.citedreferenceFurlong, K. P., Hanson, R. B., & Bowers, J. R. ( 1991 ). Modeling thermal regimes. In D. M. Kerrick (Ed.), Contact metamorphism (pp. 437 – 498 ). Chelsea, MI: Mineralogical Society of America.
dc.identifier.citedreferenceGazel, E., Plank, T., Forsyth, D. W., Bendersky, C., Lee, C.‐T., & Hauri, E. H. ( 2012 ). Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California. Geochemistry, Geophysics, Geosystems, 13, Q0AK06. https://doi.org/10.1029/2012GC004060
dc.identifier.citedreferenceGonnermann, H., & Taisne, B. ( 2015 ). Magma transport in dikes. In H. Sigurdsson (Ed.), The Encyclopedia of Volcanoes (pp. 215 – 224 ). Cambridge: Academic Press.
dc.identifier.citedreferenceGualda, G. A. R., Ghiorso, M. S., Lemons, R. V., & Carley, T. L. ( 2012 ). Rhyolite‐MELTS: A modified calibration of MELTS optimized for silica‐rich, fluid‐bearing magmatic systems. Journal of Petrology, 53 ( 5 ), 875 – 890. https://doi.org/10.1093/petrology/egr080
dc.identifier.citedreferenceHalliday, A. N., Fallick, A. E., Hutchinson, J., & Hildreth, W. ( 1984 ). A Nd, Sr, and O isotopic investigation into the causes of chemical and isotopic zonation in the Bishop Tuff, California. Earth and Planetary Science Letters, 68 ( 3 ), 379 – 391. https://doi.org/10.1016/0012‐821X(84)90123‐7
dc.identifier.citedreferenceHetland, E. A., Simons, M., & Dunham, E. M. ( 2010 ). Postseismic and interseismic deformation due to fault creep I: Model description. Geophysical Journal International, 181 ( 1 ), 81 – 98. https://doi.org/10.1111/j.1365‐246X.2010.04522.x
dc.identifier.citedreferenceHildreth, W. ( 2004 ). Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several contiguous but discrete systems. Journal of Volcanology and Geothermal Research, 136, 169 – 198. https://doi.org/10.1016/j.jvolgeores.2004.05.019
dc.identifier.citedreferenceHildreth, W., Fierstein, J., & Calvert, A. ( 2017 ). Early postcaldera rhyolite and structural resurgence at Long Valley Caldera, California. Journal of Volcanology and Geophysical Research, 335, 1 – 34. https://doi.org/10.1016/j.jvolgeores.2017.01.005
dc.identifier.citedreferenceHildreth, W., & Wilson, C. J. N. ( 2007 ). Compositional zoning of the Bishop Tuff. Journal of Petrology, 48 ( 5 ), 951 – 999. https://doi.org/10.1093/petrology/egm007
dc.identifier.citedreferenceHofmeister, A. M. ( 1999 ). Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283 ( 5408 ), 1699 – 1706. https://doi.org/10.1126/science.283.5408.1699
dc.identifier.citedreferenceHolbrook, W. S., Mooney, W. D., & Christensen, N. I. ( 1992 ). The seismic velocity structure of the deep continental crust. In D. M. Fountain, R. Arculus, & R. W. Kay (Eds.), Continental Lower Crust (pp. 1 – 43 ). Amsterdam: Elsevier.
dc.identifier.citedreferenceHuang, W., & Russell, R. D. ( 2011 ). Adaptive moving mesh methods.  Applied Mathematical Sciences (pp. 434 ). New York, NY: Springer. https://doi.org/10.1007/978‐1‐4419‐7916‐2
dc.identifier.citedreferenceHuppert, H. E., & Sparks, R. S. J. ( 1988 ). The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29 ( 3 ), 599 – 624. https://doi.org/10.1093/petrology/29.3.599
dc.identifier.citedreferenceJackson, M. D., Cheadle, M. J., & Atherton, M. P. ( 2003 ). Quantitative modeling of granitic melt generation and segregation in the continental crust. Journal of Geophysical Research, 108 ( B7 ), 2332. https://doi.org/10.1029/2001JB001050
dc.identifier.citedreferenceKarakas, O., & Dufek, J. ( 2015 ). Melt evolution and residence in extending crust: Thermal modeling of the crust and crustal magmas. Earth and Planetary Science Letters, 425, 131 – 144. https://doi.org/10.1016/j.epsl.2015.06.001
dc.identifier.citedreferenceKay, R. W., Kay, S. M., & Arculus, R. J. ( 1992 ). Magma genesis and crustal processing. In D. M. Fountain, R. Arculus, & R. W. Kay (Eds.), Continental Lower Crust (pp. 423 – 445 ). Amsterdam: Elsevier.
dc.identifier.citedreferenceLange, R. A. ( 1997 ). A revised model for the density and thermal expansivity of K 2 O‐Na 2 O‐CaOMgO‐Al 2 O 3 ‐SiO 2 liquids from 700–1900 K: Extension to crustal magmatic temperatures. Contributions to Mineralogy and Petrology, 130, 1 – 11. https://doi.org/10.1007/s004100050345
dc.identifier.citedreferenceLange, R. A. ( 2013 ). The origin of highly evolved, voluminous rhyolites by progressive, multiple episodes of partial melting: The resolution of several paradoxes. Geochemical Society Ingerson Lecture, Geological Society of America Abstracts with Programs, vol. 45, no. 7, p. 84.
dc.identifier.citedreferenceLange, R. A. ( 2019 ). Evidence for rapid transport of rhyolite melt during hydrous partial melting of granitoid: The critical role of pre‐existing aplite dikes and fluid‐undersaturated conditions. American Geophysical Union Fall Meeting Abstracts, V44A‐01.
dc.identifier.citedreferenceLeeman, W. P., Annen, C., & Dufek, J. ( 2008 ). Snake River Plain—Yellowstone silicic volcanism: Implications for magma genesis and magma fluxes. Geological Society, London, Special Publications, 304, 235 – 259. https://doi.org/10.1144/SP304.12
dc.identifier.citedreferenceLevander, A., & Miller, M. S. ( 2012 ). Evolutionary aspects of lithosphere discontinuity structure in the western U.S. Geochemistry, Geophysics, Geosystems, 13, Q0AK07. https://doi.org/10.1029/2012GC004056
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.