Show simple item record

Regulation of ecto‐apyrase CD39 (ENTPD1) expression by phosphodiesterase III (PDE3)

dc.contributor.authorBaek, Amy E.
dc.contributor.authorKanthi, Yogendra
dc.contributor.authorSutton, Nadia R.
dc.contributor.authorLiao, Hui
dc.contributor.authorPinsky, David J.
dc.date.accessioned2020-03-17T18:32:11Z
dc.date.available2020-03-17T18:32:11Z
dc.date.issued2013-11
dc.identifier.citationBaek, Amy E.; Kanthi, Yogendra; Sutton, Nadia R.; Liao, Hui; Pinsky, David J. (2013). "Regulation of ecto‐apyrase CD39 (ENTPD1) expression by phosphodiesterase III (PDE3)." The FASEB Journal 27(11): 4419-4428.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154432
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherendothelium
dc.subject.othercAMP
dc.subject.othervascular homeostasis
dc.titleRegulation of ecto‐apyrase CD39 (ENTPD1) expression by phosphodiesterase III (PDE3)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154432/1/fsb2027011011.pdf
dc.identifier.doi10.1096/fj.13-234625
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceMinami, N., Suzuki, Y., Yamamoto, M., Kihira, H., Imai, E., Wada, H., Kimura, Y., Ikeda, Y., Shiku, H., and Nishikawa, M. ( 1997 ) Inhibition of shear stress‐induced platelet aggregation by cilostazol, a specific inhibitor of cGMP‐inhibited phosphodiesterase, in vitro and ex vivo. Life Sci. 61, PL383 – PL389
dc.identifier.citedreferenceMarcus, A. J., Broekman, M. J., Drosopoulos, J. H., Olson, K. E., Islam, N., Pinsky, D. J., and Levi, R. ( 2005 ) Role of CD39 (NTPDase‐1) in thromboregulation, cerebroprotection, and cardioprotection. Semin. Thromb. Hemost. 31, 234 – 246
dc.identifier.citedreferenceTrautmann, A. ( 2009 ) Extracellular ATP in the immune system: more than just a “danger signal”. Sci. Signal. 2, pe6
dc.identifier.citedreferenceWiley, J. S., Sluyter, R., Gu, B. J., Stokes, L., and Fuller, S. J. ( 2011 ) The human P2X7 receptor and its role in innate immunity. Tissue Antigens 78, 321 – 332
dc.identifier.citedreferenceSurprenant, A., Rassendren, F., Kawashima, E., North, R. A., and Buell, G. ( 1996 ) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735 – 738
dc.identifier.citedreferenceNetherton, S. J., and Maurice, D. H. ( 2005 ) Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Mol. Pharmacol. 67, 263 – 272
dc.identifier.citedreferenceBender, A. T., and Beavo, J. A. ( 2006 ) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58, 488 – 520
dc.identifier.citedreferenceBruno, O., Fedele, E., Prickaerts, J., Parker, L. A., Canepa, E., Brullo, C., Cavallero, A., Gardella, E., Balbi, A., Domenicotti, C., Bollen, E., Gijselaers, H. J., Vanmierlo, T., Erb, K., Limebeer, C. L., Argellati, F., Marinari, U. M., Pronzato, M. A., and Ricciarelli, R. ( 2011 ) GEBR‐7b, a novel PDE4D selective inhibitor that improves memory in rodents at non‐emetic doses. Br. J. Pharmacol. 164, 2054 – 2063
dc.identifier.citedreferenceRosen, R. C., and Kostis, J. B. ( 2003 ) Overview of phosphodiesterase 5 inhibition in erectile dysfunction. Am. J. Cardiol. 92, 9M – 18M
dc.identifier.citedreferenceDindyal, S., and Kyriakides, C. ( 2009 ) A review of cilostazol, a phosphodiesterase inhibitor, and its role in preventing both coronary and peripheral arterial restenosis following endovascular therapy. Recent Pat. Cardiovasc. Drug Disc. 4, 6 – 14
dc.identifier.citedreferenceKimura, Y., Tani, T., Kanbe, T., and Watanabe, K. ( 1985 ) Effect of cilostazol on platelet aggregation and experimental thrombosis. Arzneimittelforschung 35, 1144 – 1149
dc.identifier.citedreferenceDawson, D. L., Cutler, B. S., Meissner, M. H., and Strandness, D. E., Jr. ( 1998 ) Cilostazol has beneficial effects in treatment of intermittent claudication: results from a multicenter, randomized, prospective, double‐blind trial. Circulation 98, 678 – 686
dc.identifier.citedreferenceLiu, Y., Fong, M., Cone, J., Wang, S., Yoshitake, M., and Kambayashi, J. ( 2000 ) Inhibition of adenosine uptake and augmentation of ischemia‐induced increase of interstitial adenosine by cilostazol, an agent to treat intermittent claudication. J. Cardiovasc. Pharmacol. 36, 351 – 360
dc.identifier.citedreferenceLiu, Y., Shakur, Y., Yoshitake, M., and Kambayashi Ji, J. ( 2001 ) Cilostazol (pletal): a dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. Cardiovasc. Drug Rev. 19, 369 – 386
dc.identifier.citedreferenceAnderson, J. L., Baim, D. S., Fein, S. A., Goldstein, R. A., LeJemtel, T. H., and Likoff, M. J. ( 1987 ) Efficacy and safety of sustained (48 hour) intravenous infusions of milrinone in patients with severe congestive heart failure: a multicenter study. J. Am. Coll. Cardiol. 9, 711 – 722
dc.identifier.citedreferenceAnsermot, N., Albayrak, O., Schlapfer, J., Crettol, S., Croquette‐Krokar, M., Bourquin, M., Deglon, J. J., Faouzi, M., Scherbaum, N., and Eap, C. B. ( 2010 ) Substitution of (R,S)‐methadone by (R)‐methadone: impact on QTc interval. Arch. Intern. Med. 170, 529 – 536
dc.identifier.citedreferenceLira, E. C., Goncalves, D. A., Parreiras, E. S. L. T., Zanon, N. M., Kettelhut, I. C., and Navegantes, L. C. ( 2011 ) Phosphodiesterase‐4 inhibition reduces proteolysis and atrogenes expression in rat skeletal muscles. Muscle Nerve 44, 371 – 381
dc.identifier.citedreferenceGoncalves, D. A., Lira, E. C., Baviera, A. M., Cao, P., Zanon, N. M., Arany, Z., Bedard, N., Tanksale, P., Wing, S. S., Lecker, S. H., Kettelhut, I. C., and Navegantes, L. C. ( 2009 ) Mechanisms involved in 3 prime;,5 prime; ‐cyclic adenosine monophosphate‐mediated inhibition of the ubiquitin‐proteasome system in skeletal muscle. Endocrinology 150, 5395 – 5404
dc.identifier.citedreferenceWu, Y., Sun, X., Kaczmarek, E., Dwyer, K. M., Bianchi, E., Usheva, A., and Robson, S. C. ( 2006 ) RanBPM associates with CD39 and modulates ecto‐nucleotidase activity. Biochem. J. 396, 23 – 30
dc.identifier.citedreferenceAtabakhsh, E., Bryce, D. M., Lefebvre, K. J., and Schild‐Poulter, C. ( 2009 ) RanBPM has proapoptotic activities that regulate cell death pathways in response to DNA damage. Mol. Cancer Res. 7, 1962 – 1972
dc.identifier.citedreferenceNakamura, M., Masuda, H., Horii, J., Kuma, K., Yokoyama, N., Ohba, T., Nishitani, H., Miyata, T., Tanaka, M., and Nishimoto, T. ( 1998 ) When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to gamma‐tubulin. J. Cell Biol. 143, 1041 – 1052
dc.identifier.citedreferenceKramer, S., Ozaki, T., Miyazaki, K., Kato, C., Hanamoto, T., and Nakagawara, A. ( 2005 ) Protein stability and function of p73 are modulated by a physical interaction with RanBPM in mammalian cultured cells. Oncogene 24, 938 – 944
dc.identifier.citedreferenceWang, L., Fu, C., Cui, Y., Xie, Y., Yuan, Y., Wang, X., Chen, H., and Huang, B. R. ( 2012 ) The Ran‐binding protein RanBPM can depress the NF‐kappaB pathway by interacting with TRAF6. Mol. Cell. Biochem. 359, 83 – 94
dc.identifier.citedreferenceWang, Q., Tang, X. N., and Yenari, M. A. ( 2007 ) The inflammatory response in stroke. J. Neuroimmunol. 184, 53 – 68
dc.identifier.citedreferenceElkind, M. S. ( 2010 ) Inflammatory mechanisms of stroke. Stroke 41, S3 – S8
dc.identifier.citedreferenceKaczmarek, E., Koziak, K., Sevigny, J., Siegel, J. B., Anrather, J., Beaudoin, A. R., Bach, F. H., and Robson, S. C. ( 1996 ) Identification and characterization of CD39/vascular ATP diphosphohydrolase. J. Biol. Chem. 271, 33116 – 33122
dc.identifier.citedreferenceKoziak, K., Sevigny, J., Robson, S. C., Siegel, J. B., and Kaczmarek, E. ( 1999 ) Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thromb. Haemost. 82, 1538 – 1544
dc.identifier.citedreferenceMarcus, A. J., Broekman, M. J., Drosopoulos, J. H., Islam, N., Alyonycheva, T. N., Safier, L. B., Hajjar, K. A., Posnett, D. N., Schoenborn, M. A., Schooley, K. A., Gayle, R. B., and Maliszewski, C. R. ( 1997 ) The endothelial cell ecto‐ADPase responsible for inhibition of platelet function is CD39. J. Clin. Invest. 99, 1351 – 1360
dc.identifier.citedreferenceHyman, M. C., Petrovic‐Djergovic, D., Visovatti, S. H., Liao, H., Yanamadala, S., Bouis, D., Su, E. J., Lawrence, D. A., Broekman, M. J., Marcus, A. J., and Pinsky, D.J. ( 2009 ) Self‐regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. J. Clin. Invest. 119, S1136 – 1149
dc.identifier.citedreferenceLiao, H., Hyman, M. C., Baek, A. E., Fukase, K., and Pinsky, D.J. ( 2010 ) cAMP/CREB‐mediated transcriptional regulation of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) expression. J. Biol. Chem. 285, 14791 – 14805
dc.identifier.citedreferenceEssler, M., Staddon, J. M., Weber, P. C., and Aepfelbacher, M. ( 2000 ) Cyclic AMP blocks bacterial lipopolysaccharide‐induced myosin light chain phosphorylation in endothelial cells through inhibition of Rho/Rho kinase signaling. J. Immunol. 164, 6543 – 6549
dc.identifier.citedreferenceStull, J. T. ( 1980 ) Phosphorylation of contractile proteins in relation to muscle function. Adv. Cyclic Nucleotide Res. 13, 39 – 93
dc.identifier.citedreferenceAdelstein, R. S., Conti, M. A., and Pato, M. D. ( 1980 ) Regulation of myosin light chain kinase by reversible phosphorylation and calcium‐calmodulin. Ann. N. Y. Acad. Sci. 356, 142 – 150
dc.identifier.citedreferenceKoga, S., Morris, S., Ogawa, S., Liao, H., Bilezikian, J. P., Chen, G., Thompson, W. J., Ashikaga, T., Brett, J., Stern, D. M., and Pinsky, D.J. ( 1995 ) TNF modulates endothelial properties by decreasing cAMP. Am. J. Physiol. 268, C1104 – C1113
dc.identifier.citedreferenceZhang, W., Ke, H., and Colman, R. W. ( 2002 ) Identification of interaction sites of cyclic nucleotide phosphodiesterase type 3A with milrinone and cilostazol using molecular modeling and site‐directed mutagenesis. Mol. Pharmacol. 62, 514 – 520
dc.identifier.citedreferenceSchror, K. ( 2002 ) The pharmacology of cilostazol. Diabetes Obes. Metab. 4 ( Suppl. 2 ), S14 – S19
dc.identifier.citedreferenceYano, M., Kohno, M., Ohkusa, T., Mochizuki, M., Yamada, J., Hisaoka, T., Ono, K., Tanigawa, T., Kobayashi, S., and Matsuzaki, M. ( 2000 ) Effect of milrinone on left ventricular relaxation and Ca(2+) uptake function of cardiac sarcoplasmic reticulum. Am. J. Physiol. Heart Circ. Physiol. 279, H1898 – H1905
dc.identifier.citedreferenceJaffe, E. A., Nachman, R. L., Becker, C. G., and Minick, C. R. ( 1973 ) Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745 – 2756
dc.identifier.citedreferenceFujiwara, Y., Banno, H., Shinkai, Y., Yamamoto, C., Kaji, T., and Satoh, M. ( 2011 ) Protective effect of pretreatment with cilostazol on cytotoxicity of cadmium and arsenite in cultured vascular endothelial cells. J. Toxicol. Sci. 36, 155 – 161
dc.identifier.citedreferenceCone, J., Wang, S., Tandon, N., Fong, M., Sun, B., Sakurai, K., Yoshitake, M., Kambayashi, J., and Liu, Y. ( 1999 ) Comparison of the effects of cilostazol and milrinone on intracellular cAMP levels and cellular function in platelets and cardiac cells. J. Cardiovasc. Pharmacol. 34, 497 – 504
dc.identifier.citedreferenceBramer, S. L., Forbes, W. P., and Mallikaarjun, S. ( 1999 ) Cilostazol pharmacokinetics after single and multiple oral doses in healthy males and patients with intermittent claudication resulting from peripheral arterial disease. Clin. Pharmacokinet. 37 ( Suppl. 2 ), 1 – 11
dc.identifier.citedreferenceGorodeski, E. Z., Chu, E. C., Reese, J. R., Shishehbor, M. H., Hsich, E., and Starling, R. C. ( 2009 ) Prognosis on chronic dobutamine or milrinone infusions for stage D heart failure. Circ. Heart Failure 2, 320 – 324
dc.identifier.citedreferenceZhong, X., Malhotra, R., Woodruff, R., and Guidotti, G. ( 2001 ) Mammalian plasma membrane ecto‐nucleoside triphosphate diphosphohydrolase 1, CD39, is not active intracellularly: the N‐glycosylation state of CD39 correlates with surface activity and localization. J. Biol. Chem. 276, 41518 – 41525
dc.identifier.citedreferenceEltzschig, H. K., Kohler, D., Eckle, T., Kong, T., Robson, S. C., and Colgan, S. P. ( 2009 ) Central role of Sp1‐regulated CD39 in hypoxia/ischemia protection. Blood 113, 224 – 232
dc.identifier.citedreferenceReutershan, J., Vollmer, I., Stark, S., Wagner, R., Ngamsri, K. C., and Eltzschig, H. K. ( 2009 ) Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS‐induced PMN trafficking into the lungs. FASEB J. 23, 473 – 482
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.