Show simple item record

Cyclic strain inhibits switching of smooth muscle cells to an osteoblastâ like phenotype

dc.contributor.authorNikolovski, Janeta
dc.contributor.authorKim, Byung‐soo
dc.contributor.authorMooney, David J.
dc.date.accessioned2020-03-17T18:32:22Z
dc.date.available2020-03-17T18:32:22Z
dc.date.issued2003-03
dc.identifier.citationNikolovski, Janeta; Kim, Byung‐soo ; Mooney, David J. (2003). "Cyclic strain inhibits switching of smooth muscle cells to an osteoblastâ like phenotype." The FASEB Journal 17(3): 1-21.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154437
dc.publisherWiley Periodicals, Inc.
dc.subject.otherosteopontin
dc.subject.othermatrix gla protein
dc.subject.othercalcification
dc.subject.othermechanical strain
dc.subject.othertissue engineering
dc.titleCyclic strain inhibits switching of smooth muscle cells to an osteoblastâ like phenotype
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154437/1/fsb2fj020459fje.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154437/2/fsb2fj020459fje-sup-0001.pdf
dc.identifier.doi10.1096/fj.02-0459fje
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceCunningham, J. J., Linderman, J. J., Mooney, D. J. (2002) Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Ann. Biomed. Eng. 30, 927 â 935
dc.identifier.citedreferenceBostrom, K. I. (2000) Cell differentiation in vascular calcification. Z. Kardiol. 89, Suppl 2, 69 â 74
dc.identifier.citedreferenceSeliktar, D., Black, R. A., Vito, R. P., Nerem, R. M. (2000) Dynamic mechanical conditioning of collagenâ gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28, 351 â 362
dc.identifier.citedreferenceGirton, T. S., Oegema, T. R., Grassl, E. D., Isenberg, B. C., Tranquillo, R. T. (2000) Mechanisms of stiffening and strengthening in mediaâ equivalents fabricated using glycation. J. Biomech. Eng. 122, 216 â 223
dc.identifier.citedreferenceIizuka, K., Murakami, T., Kawaguchi, H. (2001) Pure atmospheric pressure promotes an expression of osteopontin in human aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 283, 493 â 498
dc.identifier.citedreferenceKanda, K., Matsuda, T. (1994) Mechanical stressâ induced orientation and ultrastructural change of smooth muscle cells cultured in 3â D collagen lattices. Cell Transplant. 3, 481 â 492
dc.identifier.citedreferenceMills, I., Cohen, C. R., Kamal, K., Li, G., Shin, T., Du, W., Sumpio, B. E. (1997) Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. J. Cell. Physiol. 170, 228 â 234
dc.identifier.citedreferencePutnam, A. J., Cunningham, J. J., Dennis, R. G., Linderman, J. J., Mooney, D. J. (1998) Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. J. Cell Sci. 111, 3379 â 3387
dc.identifier.citedreferenceLee, D. A., Noguchi, T., Knight, M. M., O’Donnell, L., Bentley, G., Bader, D. L. (1998) Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. J. Orthop. Res. 16, 726 â 733
dc.identifier.citedreferenceMeyer, U., Meyer, T., Wiesmann, H. P., Kruseâ Losler, B., Vollmer, D., Stratmann, U., Joos, U. (2001) Mechanical tension in distraction osteogenesis regulates chondrocytic differentiation. International Journal of Oral & Maxillofacial Surger. 30, 522 â 530
dc.identifier.citedreferenceMeyer, U., Meyer, T., Schlegel, W., Scholz, H., Joos, U. (2001) Tissue differentiation and cytokine synthesis during strainâ related bone formation in distraction osteogenesis. Br. J. Oral Maxillofac. Surg. 39, 22 â 29
dc.identifier.citedreferenceSato, M., Morii, E., Komori, T., Kawahata, H., Sugimoto, M., Terai, K., Shimizu, H., Yasui, T., Ogihara, H., Yasui, N., et al. (1998) Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene 17, 1517 â 1525
dc.identifier.citedreferenceDenhardt, D. T., Noda, M., O’Regan, A. W., Pavlin, D., Berman, J. S. (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J. Clin. Invest. 107, 1055 â 1061
dc.identifier.citedreferenceKim, B. S., Nikolovski, J., Bonadio, J., Smiley, B., Mooney, D. J. (1999) Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp. Cell Res. 251, 318 â 328
dc.identifier.citedreferenceL’Heureux, N., Stoclet, J. C., Auger, F. A., Lagaud, G. J., Germain, L., Andriantsitohaina, R. (2001) A human tissueâ engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J. 15, 515 â 524
dc.identifier.citedreferenceStock, U. A., Wiederschain, D., Kilroy, S. M., Shumâ Tim, D., Khalil, P. N., Vacanti, J. P., Mayer, J. E., Jr., Moses, M. A. (2001) Dynamics of extracellular matrix production and turnover in tissue engineered cardiovascular structures. J. Cell. Biochem. 81, 220 â 228
dc.identifier.citedreferenceHoerstrup, S. P., Sodian, R., Daebritz, S., Wang, J., Bacha, E. A., Martin, D. P., Moran, A. M., Guleserian, K. J., Sperling, J. S., Kaushal, S., et al. (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102, III44 â III49
dc.identifier.citedreferenceNiklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R., Langer, R. (1999) Functional arteries grown in vitro. Science 284, 489 â 493
dc.identifier.citedreferencePei, M., Solchaga, L. A., Seidel, J., Zeng, L., Vunjakâ Novakovic, G., Caplan, A. I., Freed, L. E. (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J. published Aug 7, 2002, 10.1096/fj.02â 0083fje
dc.identifier.citedreferenceSikavitsas, V. I., Bancroft, G. N., Mikos, A. G. (2002) Formation of 3â D cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J. Biomed. Mater. Res. 62, 136 â 148
dc.identifier.citedreferenceWozniak, M., Fausto, A., Carron, C. P., Meyer, D. M., Hruska, K. A. (2000) Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3â integrin expression. J. Bone Miner. Res. 15, 1731 â 1745
dc.identifier.citedreferenceGiachelli, C. M. (2001) Ectopic calcification: new concepts in cellular regulation. Z. Kardiol. 90, Suppl 3, 31 â 37
dc.identifier.citedreferenceJono, S., McKee, M. D., Murry, C. E., Shioi, A., Nishizawa, Y., Mori, K., Morii, H., Giachelli, C. M. (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10 â E17
dc.identifier.citedreferenceDemer, L. L. (1995) A skeleton in the atherosclerosis closet. Circulation 92, 2029 â 2032
dc.identifier.citedreferenceWada, T., McKee, M. D., Steitz, S., Giachelli, C. M. (1999) Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ. Res. 84, 166 â 178
dc.identifier.citedreferenceShioi, A., Nishizawa, Y., Jono, S., Koyama, H., Hosoi, M., Morii, H. (1995) Betaâ glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 15, 2003 â 2009
dc.identifier.citedreferenceProudfoot, D., Skepper, J. N., Shanahan, C. M., Weissberg, P. L. (1998) Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression. Arterioscler. Thromb. Vasc. Biol. 18, 379 â 388
dc.identifier.citedreferenceWatson, K. E., Bostrom, K., Ravindranath, R., Lam, T., Norton, B., Demer, L. L. (1994) TGFâ beta 1 and 25â hydroxycholesterol stimulate osteoblastâ like vascular cells to calcify. J. Clin. Invest. 93, 2106 â 2113
dc.identifier.citedreferenceStein, G. S., Lian, J. B., Owen, T. A. (1990) Relationship of cell growth to the regulation of tissueâ specific gene expression during osteoblast differentiation. FASEB J. 4, 3111 â 3123
dc.identifier.citedreferenceGiachelli, C. M., Bae, N., Almeida, M., Denhardt, D. T., Alpers, C. E., Schwartz, S. M. (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J. Clin. Invest. 92, 1686 â 1696
dc.identifier.citedreferenceShanahan, C. M., Cary, N. R., Metcalfe, J. C., Weissberg, P. L. (1994) High expression of genes for calcificationâ regulating proteins in human atherosclerotic plaques. J. Clin. Invest. 93, 2393 â 2402
dc.identifier.citedreferenceHao, H., Hirota, S., Tsukamoto, Y., Imakita, M., Ishibashiâ Ueda, H., Yutani, C. (1995) Alterations of bone matrix protein mRNA expression in rat aorta in vitro. Arterioscler. Thromb. Vasc. Biol. 15, 1474 â 1480
dc.identifier.citedreferenceGadeau, A. P., Campan, M., Millet, D., Candresse, T., Desgranges, C. (1993) Osteopontin overexpression is associated with arterial smooth muscle cell proliferation in vitro. Arterioscler. Thromb. 13, 120 â 125
dc.identifier.citedreferenceSteitz, S. A., Speer, M. Y., Curinga, G., Yang, H. Y., Haynes, P., Aebersold, R., Schinke, T., Karsenty, G., Giachelli, C. M. (2001) Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ. Res. 89, 1147 â 1154
dc.identifier.citedreferenceBostrom, K., Watson, K. E., Horn, S., Wortham, C., Herman, I. M., Demer, L. L. (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest. 91, 1800 â 1809
dc.identifier.citedreferenceYamamoto, M., Aoyagi, M., Azuma, H., Yamamoto, K. (1997) Changes in osteopontin mRNA expression during phenotypic transition of rabbit arterial smooth muscle cells. Histochem. Cell Biol. 107, 279 â 287
dc.identifier.citedreferenceLehoux, S., Tedgui, A. (1998) Signal transduction of mechanical stresses in the vascular wall. Hypertension 32, 338 â 345
dc.identifier.citedreferenceRoss, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801 â 809
dc.identifier.citedreferenceWozniak, M., Fausto, A., Carron, C. P., Meyer, D. M., Hruska, K. A. (2000) Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3â integrin expression. J. Bone Miner. Res. 15, 1731 â 1745
dc.identifier.citedreferenceKaspar, D., Seidl, W., Neidlingerâ Wilke, C., Ignatius, A., Claes, L. (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J. Biomech. 33, 45 â 51
dc.identifier.citedreferenceMeyer, U., Meyer, T., Vosshans, J., Joos, U. (1999) Decreased expression of osteocalcin and osteonectin in relation to high strains and decreased mineralization in mandibular distraction osteogenesis. J. Craniomaxillofac. Surg. 27, 222 â 227
dc.identifier.citedreferenceKim, B. S., Nikolovski, J., Bonadio, J., Mooney, D. J. (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17, 979 â 983
dc.identifier.citedreferenceParhami, F., Tintut, Y., Patel, J. K., Mody, N., Hemmat, A., Demer, L. L. (2001) Regulation of vascular calcification in atherosclerosis. Z. Kardiol. 90, Suppl 3, 27 â 30
dc.identifier.citedreferenceCaron, J. M., Jones, A. L., Kirschner, M. W. (1985) Autoregulation of tubulin synthesis in hepatocytes and fibroblasts. J. Cell Biol. 101, 1763 â 1772
dc.identifier.citedreferenceCunningham, J. J., Nikolovski, J., Linderman, J., Mooney, D.J. (2002) Quantification of fibronectin adsorption to siliconeâ rubber cell culture substrates. Biotechniques 32 ( 4 ), 876 â 880
dc.identifier.citedreferenceCrosby, A. H., Lyu, M. S., Lin, K., McBride, O. W., Kerr, J. M., Aplin, H. M., Fisher, L. W., Young, M. F., Kozak, C. A., Dixon, M. J. (1996) Mapping of the human and mouse bone sialoprotein and osteopontin loci. Mamm. Genome 7, 149 â 151
dc.identifier.citedreferenceDucy, P., Zhang, R., Geoffroy, V., Ridall, A. L., Karsenty, G. (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747 â 754
dc.identifier.citedreferenceKim, B. S., Putnam, A. J., Kulik, T. J., Mooney, D. J. (1998) Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnol. Bioeng. 57, 46 â 54
dc.identifier.citedreferenceManolagas, S. C., Burton, D. W., Deftos, L. J. (1981) 1,25â Dihydroxyvitamin D3 stimulates the alkaline phosphatase activity of osteoblastâ like cells. J. Biol. Chem. 256, 7115 â 7117
dc.identifier.citedreferenceKim, B. S., Mooney, D. J. (2000) Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions. J. Biomech. Eng. 122, 210 â 215
dc.identifier.citedreferenceLi, C., Xu, Q. (2000) Mechanical stressâ initiated signal transductions in vascular smooth muscle cells. Cell. Signal. 12, 435 â 445
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.