Show simple item record

Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4‐/‐ mice

dc.contributor.authorSchuh, Jane M.
dc.contributor.authorPower, Christine A.
dc.contributor.authorProudfoot, Amanda E.
dc.contributor.authorKunkel, Steven L.
dc.contributor.authorLukacs, Nicholas W.
dc.contributor.authorHogaboam, Cory M.
dc.date.accessioned2020-03-17T18:32:32Z
dc.date.available2020-03-17T18:32:32Z
dc.date.issued2002-08
dc.identifier.citationSchuh, Jane M.; Power, Christine A.; Proudfoot, Amanda E.; Kunkel, Steven L.; Lukacs, Nicholas W.; Hogaboam, Cory M. (2002). "Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4‐/‐ mice." The FASEB Journal 16(10): 1313-1315.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154441
dc.description.abstractThe role of CC chemokine receptor 4 (CCR4) during the development and maintenance of Th2type allergic airway disease is controversial. In this study, we examined the role of CCR4 in the chronic allergic airway response to live Aspergillus fumigatus spores, or conidia, in A. fumigatussensitized mice. After the conidia challenge, mice lacking CCR4 (CCR4‐/‐ mice) exhibited significantly increased numbers of airway neutrophils and macrophages, and conidia were more rapidly eliminated from these mice compared with control CCR4 wild‐type (CCR4+/+) mice. Significant airway hyperresponsiveness to intravenous methacholine was observed at day 3 in CCR4‐/‐ mice, whereas at days 7 and 30, airway hyperresponsiveness was attenuated in these mice compared with control mice. A major reduction in peribronchial and airway eosinophilia was observed in CCR4‐/‐ mice at all times after conidia challenge in contrast to CCR4+/+ mice. Further, whole lung levels of interleukin (IL) 4 and IL‐5 were significantly increased in CCR4‐/‐ mice at day 3, whereas these Th2 cytokines and IL‐13 were significantly decreased at day 30 in CCR4‐/‐ mice compared with their wild‐type counterparts. Peribronchial fibrosis and goblet cell hyperplasia were similar in both groups of mice throughout the course of this model. In summary, CCR4 modulates both innate and acquired immune responses associated with chronic fungal asthma.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAspergillus fumigatus
dc.subject.otherasthma
dc.subject.otherallergy
dc.subject.otherairway hyperreactivity
dc.subject.otherinflammation
dc.titleAirway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4‐/‐ mice
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154441/1/fsb2fasebj16100193-sup-0001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154441/2/fsb2fasebj16100193.pdf
dc.identifier.doi10.1096/fj.02-0193fje
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceRoilides, E., Katsifa, H., and Walsh, T. J. ( 1998 ) Pulmonary host defenses against Aspergillus fumigatus. Res Immunol 149, 454 ‐ 465
dc.identifier.citedreferenceRothenberg, M. E., Petersen, J., Stevens, R. L., Silberstein, D. S., McKenzie, D. T., Austen, K. F., and Owen, W. F. ( 1989 ) IL‐5‐dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody‐dependent cytotoxicity. J Immunol 143, 2311 ‐ 2316
dc.identifier.citedreferenceGrunig, G., Warnock, M., Wakil, A. E., Venkayya, R., Brombacher, F., Rennick, D. M., Sheppard, D., Mohrs, M., Donaldson, D. D., Locksley, R. M., and Corry, D. B. ( 1998 ) Requirement for IL‐13 independently of IL‐4 in experimental asthma. Science 282, 2261 ‐ 2263
dc.identifier.citedreferenceWills‐Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T. Y., Karp, C. L., and Donaldson, D. D. ( 1998 ) Interleukin‐13: central mediator of allergic asthma. Science 282, 2258 ‐ 2261
dc.identifier.citedreferenceZhu, Z., Homer, R. J., Wang, Z., Chen, Q., Geba, G. P., Wang, J., Zhang, Y., and Elias, J.A. ( 1999 ) Pulmonary expression of interleukin‐13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103, 779 ‐ 788
dc.identifier.citedreferenceBlease, K., Schuh, J., Jakubzick, C., Lukacs, N. W., Kunkel, S. L., Joshi, B. H., Puri, R. K., Kaplan, M. H., and Hogaboam, C. M. ( 2002 ) Stat6‐deficient mice develop airway hyperresponsiveness and peribronchial fibrosis during chronic fungal asthma. Am J Pathol 160, 481 ‐ 490
dc.identifier.citedreferenceBlease, K., Jakubzick, C., Schuh, J. M., Joshi, B. H., Puri, R. K., and Hogaboam, C. M. ( 2001 ) IL‐13 fusion cytotoxin ameliorates chronic fungal‐induced allergic airway disease in mice. J Immunol 167, 6583 ‐ 6592
dc.identifier.citedreferenceHamerman, J. A., and Aderem, A. ( 2001 ) Functional transitions in macrophages during in vivo infection with Mycobacterium bovis bacillus Calmette‐Guerin. J Immunol 167, 2227 ‐ 2233
dc.identifier.citedreferenceMehrad, B., Strieter, R. M., and Standiford, T. J. ( 1999 ) Role of TNF‐α in pulmonary host defense in murine invasive aspergillosis. J Immunol 162, 1633 ‐ 1640
dc.identifier.citedreferenceElstad, M. R. ( 1991 ) Aspergillosis and lung defenses. Semin Respir Infect 6, 27 ‐ 36
dc.identifier.citedreferenceYousefi, S., Cooper, P. R., Potter, S. L., Mueck, B., and Jarai, G. ( 2001 ) Cloning and expression analysis of a novel G‐protein‐coupled receptor selectively expressed on granulocytes. J Leukoc Biol 69, 1045 ‐ 1052
dc.identifier.citedreferenceWarschkau, H., and Kiderlen, A. F. ( 1999 ) A monoclonal antibody directed against the murine macrophage surface molecule F4/80 modulates natural immune response to Listeria monocytogenes. J Immunol 163, 3409 ‐ 3416
dc.identifier.citedreferenceBochner, B. S., Bickel, C. A., Taylor, M. L., MacGlashan, D. W., Jr., Gray, P. W., Raport, C. J., and Godiska, R. ( 1999 ) Macrophage‐derived chemokine induces human eosinophil chemotaxis in a CC chemokine receptor 3‐ and CC chemokine receptor 4independent manner. J Allergy Clin Immunol 103, 527 ‐ 532
dc.identifier.citedreferenceNagase, H., Kudo, K., Izumi, S., Ohta, K., Kobayashi, N., Yamaguchi, M., Matsushima, K., Morita, Y., Yamamoto, K., and Hirai, K. ( 2001 ) Chemokine receptor expression profile of eosinophils at inflamed tissue sites: decreased CCR3 and increased CXCR4 expression by lung eosinophils. J Allergy Clin Immunol 108, 563 ‐ 569
dc.identifier.citedreferenceD’Ambrosio, D., Iellem, A., Bonecchi, R., Mazzeo, D., Sozzani, S., Mantovani, A., and Sinigaglia, F. ( 1998 ) Selective up‐regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol 161, 5111 ‐ 5115
dc.identifier.citedreferenceLloyd, C. M., Delaney, T., Nguyen, T., Tian, J., Martinez, A. C., Coyle, A. J., and Gutierrez‐Ramos, J. C. ( 2000 ) CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte‐derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J Exp Med 191, 265 ‐ 274
dc.identifier.citedreferenceHogaboam, C. M., Gallinat, C. S., Taub, D. D., Strieter, R. M., Kunkel, S. L., and Lukacs, N. W. ( 1999 ) Immunomodulatory role of C10 chemokine in a murine model of allergic bronchopulmonary aspergillosis. J Immunol 162, 6071 ‐ 6079
dc.identifier.citedreferenceSchuh, J. M., Blease, K., Kunkel, S. L., and Hogaboam, C. M. ( 2002 ) Eotaxin/CCL11 is involved in acute, but not chronic, allergic airway responses to Aspergillus fumigatus. Am J Physiol In press
dc.identifier.citedreferenceSchuh, J. M., Blease, K., and Hogaboam, C. M. ( 2002 ) CXCR2 is necessary for the development and persistence of chronic fungal asthma in mice. J Immunol 168, 1447 ‐ 1456
dc.identifier.citedreferenceNadel, J. A. ( 1991 ) Role of enzymes from inflammatory cells on airway submucosal gland secretion. Respiration 58, 3 ‐ 5
dc.identifier.citedreferenceBurgel, P. R., Escudier, E., Coste, A., Dao‐Pick, T., Ueki, I. F., Takeyama, K., Shim, J. J., Murr, A. H., and Nadel, J. A. ( 2000 ) Relation of epidermal growth factor receptor expression to goblet cell hyperplasia in nasal polyps. J Allergy Clin Immunol 106, 705 ‐ 712
dc.identifier.citedreferenceNadel, J. A. ( 2000 ) Role of neutrophil elastase in hypersecretion during COPD exacerbations, and proposed therapies. Chest 117, 386S‐389S
dc.identifier.citedreferenceNogami, H., Aizawa, H., Matsumoto, K., Nakano, H., Koto, H., Miyazaki, H., Hirose, T., Nishima, S., and Hara, N. ( 2000 ) Neutrophil elastase inhibitor, ONO‐5046 suppresses ozone‐induced airway mucus hypersecretion in guinea pigs. Eur J Pharmacol 390, 197 ‐ 202
dc.identifier.citedreferenceAgusti, C., Takeyama, K., Cardell, L. O., Ueki, I., Lausier, J., Lou, Y. P., and Nadel, J. A. ( 1998 ) Goblet cell degranulation after antigen challenge in sensitized guinea pigs. Role of neutrophils. Am J Respir Crit Care Med 158, 1253 ‐ 1258
dc.identifier.citedreferenceJohnson, P. R., Black, J. L., Carlin, S., Ge, Q., and Underwood, P. A. ( 2000 ) The production of extracellular matrix proteins by human passively sensitized airway smooth‐muscle cells in culture: the effect of beclomethasone. Am J Respir Crit Care Med 162, 2145 ‐ 2151
dc.identifier.citedreferenceCampbell, E., Kunkel, S. L., Strieter, R. M., and Lukacs, N. W. ( 2000 ) Differential roles of IL‐18 in allergic airway disease: induction of eotaxin by resident cell populations exacerbates eosinophil accumulation. J Immunol 164, 1096 ‐ 1102
dc.identifier.citedreferenceImai, T., Chantry, D., Raport, C. J., Wood, C. L., Nishimura, M., Godiska, R., Yoshie, O., and Gray, P. W. ( 1998 ) Macrophage‐derived chemokine is a functional ligand for the CC chemokine receptor 4. J Biol Chem 273, 1764 ‐ 1768
dc.identifier.citedreferenceChantry, D., Romagnani, P., Raport, C. J., Wood, C. L., Epp, A., Romagnani, S., and Gray, P. W. ( 1999 ) Macrophage‐derived chemokine is localized to thymic medullary epithelial cells and is a chemoattractant for CD3 +, CD4 +, CD8 low thymocytes. Blood 94, 1890 ‐ 1898
dc.identifier.citedreferenceVestergaard, C., Yoneyama, H., Murai, M., Nakamura, K., Tamaki, K., Terashima, Y., Imai, T., Yoshie, O., Irimura, T., Mizutani, H., and Matsushima, K. ( 1999 ) Overproduction of Th2‐specific chemokines in NC/Nga mice exhibiting atopic dermatitis‐like lesions. J Clin Invest 104, 1097 ‐ 1105
dc.identifier.citedreferenceCampbell, J. J., Haraldsen, G., Pan, J., Rottman, J., Qin, S., Ponath, P., Andrew, D. P., Warnke, R., Ruffing, N., Kassam, N., Wu, L., and Butcher, E. C. ( 1999 ) The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature (London) 400, 776 ‐ 780
dc.identifier.citedreferenceGutierrez‐Ramos, J. C., Lloyd, C., Kapsenberg, M. L., Gonzalo, J. A., and Coyle, A. J. ( 2000 ) Non‐redundant functional groups of chemokines operate in a coordinate manner during the inflammatory response in the lung. Immunol Rev 177, 31 ‐ 42
dc.identifier.citedreferenceGodiska, R., Chantry, D., Raport, C. J., Sozzani, S., Allavena, P., Leviten, D., Mantovani, A., and Gray, P. W. ( 1997 ) Human macrophage‐derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte‐derived dendritic cells, and natural killer cells. J Exp Med 185, 1595 ‐ 1604
dc.identifier.citedreferenceBerin, M. C., Eckmann, L., Broide, D. H., and Kagnoff, M. F. ( 2001 ) Regulated production of the T helper 2‐type T‐cell chemoattractant TARC by human bronchial epithelial cells in vitro and in human lung xenografts. Am J Respir Cell Mol Biol 24, 382 ‐ 389
dc.identifier.citedreferencePower, C. A., Meyer, A., Nemeth, K., Bacon, K. B., Hoogewerf, A. J., Proudfoot, A. E., and Wells, T. N. ( 1995 ) Molecular cloning and functional expression of a novel CC chemokine receptor cDNA from a human basophilic cell line. J Biol Chem 270, 19495–19500
dc.identifier.citedreferenceImai, T., Baba, M., Nishimura, M., Kakizaki, M., Takagi, S., and Yoshie, O. ( 1997 ) The T cell directed CC chemokine TARC is a highly specific ligand for CC chemokine receptor 4. J Biol Chem 272, 15036–15042
dc.identifier.citedreferenceMantovani, A., Gray, P. A., Van Damme, J., and Sozzani, S. ( 2000 ) Macrophage‐derived chemokine (MDC). J Leukoc Biol 68, 400 ‐ 404
dc.identifier.citedreferenceRodenburg, R. J., Brinkhuis, R. F., Peek, R., Westphal, J. R., Van Den Hoogen, F. H., van Venrooij, W. J., and van de Putte, L. B. ( 1998 ) Expression of macrophage‐derived chemokine (MDC) mRNA in macrophages is enhanced by interleukin‐1β, tumor necrosis factor α, and lipopolysaccharide. J Leukoc Biol 63, 606 ‐ 611
dc.identifier.citedreferenceChvatchko, Y., Hoogewerf, A. J., Meyer, A., Alouani, S., Juillard, P., Buser, R., Conquet, F., Proudfoot, A. E., Wells, T. N., and Power, C. A. ( 2000 ) A key role for CC chemokine receptor 4 in lipopolysaccharide‐induced endotoxic shock. J Exp Med 191, 1755 ‐ 1764
dc.identifier.citedreferenceWu, M., Fang, H., and Hwang, S. T. ( 2001 ) Cutting edge: CCR4 mediates antigen‐primed T cell binding to activated dendritic cells. J Immunol 167, 4791 ‐ 4795
dc.identifier.citedreferenceMatsukawa, A., Hogaboam, C. M., Lukacs, N. W., and Kunkel, S. L. ( 2000 ) Chemokines and innate immunity. Rev Immunogenet 2, 339 ‐ 358
dc.identifier.citedreferenceLukacs, N. W., Oliveira, S. H., and Hogaboam, C. M. ( 1999 ) Chemokines and asthma: redundancy of function or a coordinated effort? J Clin Invest 104, 995 ‐ 999
dc.identifier.citedreferenceMatsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Evanoff, H. L., and Kunkel, S. L. ( 2000 ) Pivotal role of the CC chemokine, macrophage‐derived chemokine, in the innate immune response. J Immunol 164, 5362 ‐ 5368
dc.identifier.citedreferenceGonzalo, J. A., Pan, Y., Lloyd, C. M., Jia, G. Q., Yu, G., Dussault, B., Powers, C. A., Proudfoot, A. E., Coyle, A. J., Gearing, D., and Gutierrez‐Ramos, J. C. ( 1999 ) Mouse monocyte‐derived chemokine is involved in airway hyperreactivity and lung inflammation. J Immunol 163, 403 ‐ 411
dc.identifier.citedreferenceKawasaki, S., Takizawa, H., Yoneyama, H., Nakayama, T., Fujisawa, R., Izumizaki, M., Imai, T., Yoshie, O., Homma, I., Yamamoto, K., and Matsushima, K. ( 2001 ) Intervention of thymus and activation‐regulated chemokine attenuates the development of allergic airway inflammation and hyperresponsiveness in mice. J Immunol 166, 2055 ‐ 2062
dc.identifier.citedreferencePanina‐Bordignon, P., Papi, A., Mariani, M., Di Lucia, P., Casoni, G., Bellettato, C., Buonsanti, C., Miotto, D., Mapp, C., Villa, A., Arrigoni, G., Fabbri, L. M., and Sinigaglia, F. ( 2001 ) The C‐C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen‐challenged atopic asthmatics. J Clin Invest 107, 1357 ‐ 1364
dc.identifier.citedreferenceHogaboam, C. M., Blease, K., Mehrad, B., Steinhauser, M. L., Standiford, T. J., Kunkel, S. L., and Lukacs, N. W. ( 2000 ) Chronic airway hyperreactivity, goblet cell hyperplasia, and peribronchial fibrosis during allergic airway disease induced by Aspergillus fumigatus. Am. J. Pathol. 156, 723 ‐ 732
dc.identifier.citedreferenceBlease, K., Mehrad, B., Standiford, T. J., Lukacs, N. W., Gosling, J., Boring, L., Charo, I. F., Kunkel, S. L., and Hogaboam, C. M. ( 2000 ) Enhanced pulmonary allergic responses to Aspergillus in CCR2‐/‐ mice. J Immunol 165, 2603 ‐ 2611
dc.identifier.citedreferenceBlease, K., Mehrad, B., Lukacs, N. W., Kunkel, S. L., Standiford, T. J., and Hogaboam, C. M. ( 2001 ) Antifungal and airway remodeling roles for murine monocyte chemoattractant protein‐1/CCL2 during pulmonary exposure to Asperigillus fumigatus conidia. J Immunol 166, 1832 ‐ 1842
dc.identifier.citedreferenceBlease, K., Mehrad, B., Standiford, T. J., Lukacs, N. W., Kunkel, S. L., Chensue, S. W., Lu, B., Gerard, C. J., and Hogaboam, C. M. ( 2000 ) Airway remodeling is absent in CCR1‐/‐ mice during chronic fungal allergic airway disease. J Immunol 165, 1564 ‐ 1572
dc.identifier.citedreferenceLukacs, N. W., Hogaboam, C., Chensue, S. W., Blease, K., and Kunkel, S. L. ( 2001 ) Type 1/type 2 cytokine paradigm and the progression of pulmonary fibrosis. Chest 120, 5S‐8S
dc.identifier.citedreferenceCampbell, E. M., Charo, I. F., Kunkel, S. L., Strieter, R. M., Boring, L., Gosling, J., and Lukacs, N. W. ( 1999 ) Monocyte chemoattractant protein‐1 mediates cockroach allergen‐induced bronchial hyperreactivity in normal but not CCR2‐/‐ mice: the role of mast cells. J Immunol 163, 2160 ‐ 2167
dc.identifier.citedreferenceBlease, K., Jakubzick, C., Westwick, J., Lukacs, N., Kunkel, S. L., and Hogaboam, C. M. ( 2001 ) Therapeutic effect of IL‐13 immunoneutralization during chronic experimental fungal asthma. J Immunol 166, 5219 ‐ 5224
dc.identifier.citedreferenceRoilides, E., Holmes, A., Blake, C., Venzon, D., Pizzo, P. A., and Walsh, T. J. ( 1994 ) Antifungal activity of elutriated human monocytes against Aspergillus fumigatus hyphae: enhancement by granulocyte‐macrophage colony‐stimulating factor and interferon‐gamma. J Infect Dis 170, 894 ‐ 899
dc.identifier.citedreferenceWaldorf, A. R. ( 1989 ) Pulmonary defense mechanisms against opportunistic fungal pathogens. Immunol Ser 47, 243 ‐ 271
dc.identifier.citedreferenceNocker, R. E., Schoonbrood, D. F., van de Graaf, E. A., Hack, C. E., Lutter, R., Jansen, H. M., and Out, T. A. ( 1996 ) Interleukin‐8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 109, 183 ‐ 191
dc.identifier.citedreferenceGrunig, G., Corry, D. B., Leach, M. W., Seymour, B. W., Kurup, V. P., and Rennick, D.M. ( 1997 ) Interleukin‐10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J Exp Med 185, 1089 ‐ 1099
dc.identifier.citedreferenceRoilides, E., Dimitriadou, A., Kadiltsoglou, I., Sein, T., Karpouzas, J., Pizzo, P. A., and Walsh, T. J. ( 1997 ) IL‐10 exerts suppressive and enhancing effects on antifungal activity of mononuclear phagocytes against Aspergillus fumigatus. J Immunol 158, 322 ‐ 329
dc.identifier.citedreferenceClemons, K. V., Grunig, G., Sobel, R. A., Mirels, L. F., Rennick, D. M., and Stevens, D.A. ( 2000 ) Role of IL‐10 in invasive aspergillosis: increased resistance of IL‐10 gene knockout mice to lethal systemic aspergillosis. Clin Exp Immunol 122, 186 ‐ 191
dc.identifier.citedreferenceDel Sero, G., Mencacci, A., Cenci, E., d’Ostiani, C. F., Montagnoli, C., Bacci, A., Mosci, P., Kopf, M., and Romani, L. ( 1999 ) Antifungal type 1 responses are upregulated in IL10‐deficient mice. Microbes Infect 1, 1169 ‐ 1180
dc.identifier.citedreferenceMurali, P. S., Kurup, V. P., Bansal, N. K., Fink, J. N., and Greenberger, P. A. ( 1998 ) IgE down regulation and cytokine induction by Aspergillus antigens in human allergic bronchopulmonary aspergillosis. J Lab Clin Med 131, 228 ‐ 235
dc.identifier.citedreferenceCockrill, B. A., and Hales, C. A. ( 1999 ) Allergic bronchopulmonary aspergillosis. Annu Rev Med 50, 303 ‐ 316
dc.identifier.citedreferenceGreenberger, P. A., and Patterson, R. ( 1987 ) Allergic bronchopulmonary aspergillosis. Model of bronchopulmonary disease with defined serologic, radiologic, pathologic and clinical findings from asthma to fatal destructive lung disease. Chest 91, 165S‐171S
dc.identifier.citedreferenceKauffman, H. F., Tomee, J. F., van der Werf, T. S., de Monchy, J. G., and Koeter, G. K. ( 1995 ) Review of fungus‐induced asthmatic reactions. Am J Respir Crit Care Med 151, 2109 ‐ 2115
dc.identifier.citedreferenceMosmann, T. R., and Coffman, R. L. ( 1989 ) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7, 145 ‐ 173
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.