Show simple item record

Best practices for modeling structural boundary conditions due to a localized fire

dc.contributor.authorDeSimone, Alyssa
dc.contributor.authorJeffers, Ann E.
dc.date.accessioned2020-03-17T18:32:46Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2020-03-17T18:32:46Z
dc.date.issued2020-04
dc.identifier.citationDeSimone, Alyssa; Jeffers, Ann E. (2020). "Best practices for modeling structural boundary conditions due to a localized fire." Fire and Materials 44(3): 409-422.
dc.identifier.issn0308-0501
dc.identifier.issn1099-1018
dc.identifier.urihttps://hdl.handle.net/2027.42/154450
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.othernon‐uniform heating
dc.subject.otherCFD‐FE coupling
dc.subject.otherfire‐structure interaction
dc.subject.otherlocalized fire
dc.titleBest practices for modeling structural boundary conditions due to a localized fire
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelArchitecture
dc.subject.hlbsecondlevelCivil and Environmental Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelArts
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154450/1/fam2774.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154450/2/fam2774_am.pdf
dc.identifier.doi10.1002/fam.2774
dc.identifier.sourceFire and Materials
dc.identifier.citedreferenceMcgrattan K, Mcdermott R. Sixth Edition Fire Dynamics Simulator User’s Guide; 2016. https://doi.org/10.6028/NIST.SP.1019.
dc.identifier.citedreferenceZhang C, Li GQ, Usmani A. Simulating the behavior of restrained steel beams to flame impingement from localized‐fires. J Constr Steel Res. 2013; 83: 156 ‐ 165. https://doi.org/10.1016/j.jcsr.2013.02.001
dc.identifier.citedreferenceDwaikat MMS, Kodur VKR, Quiel SE, Garlock MEM. Experimental behavior of steel beam‐columns subjected to fire‐induced thermal gradients. J Constr Steel Res. 2011; 67 ( 1 ): 30 ‐ 38. https://doi.org/10.1016/j.jcsr.2010.07.007
dc.identifier.citedreferenceZhang C, Choe L, Seif M, Zhang Z. Behavior of axially loaded steel short columns subjected to a localized fire. J Constr Steel Res. 2015; 111: 103 ‐ 111. https://doi.org/10.1016/j.jcsr.2014.11.012
dc.identifier.citedreferenceWickström U. Temperature Calculation in Fire Safety Engineering; Springer, Cham, Switzerland 2016. https://doi.org/10.1007/978‐3‐319‐30172‐3.
dc.identifier.citedreferenceEN 1991‐1‐2. Eurocode 1: Actions on structures—part 1‐5: general actions—actions on structures exposed to fire. Eurocode 1. 2002;2(2002):61
dc.identifier.citedreferenceTondini N, Morbioli A, Vassart O, Lechêne S, Franssen JM. An integrated modelling strategy between a CFD and an FE software: methodology and application to compartment fres. J Struct Fire Eng. 2016; 7 ( 3 ): 217 ‐ 233. https://doi.org/10.1108/JSFE‐09‐2016‐015
dc.identifier.citedreferenceZhang C, Li GQ, Wang R. Using adiabatic surface temperature for thermal calculation of steel members exposed to localized fires. Int J Steel Struct. 2013; 13 ( 3 ): 547 ‐ 556. https://doi.org/10.1007/s13296‐013‐3013‐2
dc.identifier.citedreferenceSilva JCG, Landesmann A, Ribeiro FLB. Fire‐thermomechanical interface model for performance‐based analysis of structures exposed to fire. Fire Saf J. 2016; 83: 66 ‐ 78. https://doi.org/10.1016/j.firesaf.2016.04.007
dc.identifier.citedreferenceZhang C, Silva JG, Weinschenk C, Kamikawa D, Hasemi Y. Simulation methodology for coupled fire‐structure analysis: modeling localized fire tests on a steel column. Fire Technol. 2016; 52 ( 1 ): 239 ‐ 262. https://doi.org/10.1007/s10694‐015‐0495‐9
dc.identifier.citedreferenceLaMalva KJ. Structural Fire Engineering. American Society of Civil Engineers, Reston, VA: 2018.
dc.identifier.citedreferenceKamikawa D, Hasemi Y, Yamada K, Nakamura M. Mechanical responses of a steel column exposed to a localized fire. In the proceedings of the fourth international workshop on structures in fire. 2006: 225 ‐ 234.
dc.identifier.citedreferenceHigginson S, Morris G. Modelling heat transfer to a steel‐beam. Master’s in engineering Thesis, University of Edinburgh; 2012.
dc.identifier.citedreferenceBeata PA, Jeffers AE. Spatial homogenization algorithm for bridging disparities in scale between the fire and solid domains. Fire Saf J. 2015; 76: 19 ‐ 30. https://doi.org/10.1016/j.firesaf.2015.05.008
dc.identifier.citedreferenceYu X, Jeffers AE. A comparison of subcycling algorithms for bridging disparities in temporal scale between the fire and solid domains. Fire Saf J. 2013; 59: 55 ‐ 61. https://doi.org/10.1016/j.firesaf.2013.03.011
dc.identifier.citedreferenceWickström U, Hunt S, Lattimer B, Barnett J, Beyler C. Technical comment—ten fundamental principles on defining and expressing thermal exposure as boundary conditions in fire safety engineering. Fire Mater. 2018; 42: 985 ‐ 988.
dc.identifier.citedreferenceIncropera F, Dewitt D. Fundamentals of Heat and Mass Transfer. Hoboken, NJ: John Wiley; 2011.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.