Show simple item record

Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling

dc.contributor.authorZheng, Hongpeng
dc.contributor.authorWu, Shaoping
dc.contributor.authorTian, Ran
dc.contributor.authorXu, Zhenming
dc.contributor.authorZhu, Hong
dc.contributor.authorDuan, Huanan
dc.contributor.authorLiu, Hezhou
dc.date.accessioned2020-03-17T18:32:47Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-03-17T18:32:47Z
dc.date.issued2020-02
dc.identifier.citationZheng, Hongpeng; Wu, Shaoping; Tian, Ran; Xu, Zhenming; Zhu, Hong; Duan, Huanan; Liu, Hezhou (2020). "Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling." Advanced Functional Materials 30(6): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/154451
dc.description.abstractSolid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries.By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercritical current density
dc.subject.otherlithium–garnet
dc.subject.othersolid electrolyte
dc.subject.othersolid‐state lithium batteries
dc.subject.otherinterface
dc.titleIntrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154451/1/adfm201906189-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154451/2/adfm201906189.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154451/3/adfm201906189_am.pdf
dc.identifier.doi10.1002/adfm.201906189
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferencea) J. Fu, P. Yu, N. Zhang, G. Ren, S. Zheng, W. Huang, X. Long, H. Li, X. Liu, Energy Environ. Sci. 2019, 12, 1404; b) Y. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, F. Pan, Adv. Energy Mater. 2019, 9, 1900671; c) A. Sharafi, C. G. Haslam, R. D. Kerns, J. Wolfenstine, J. Sakamoto, J. Mater. Chem. A 2017, 5, 21491; d) Y. Lu, X. Huang, Y. Ruan, Q. Wang, R. Kun, J. Yang, Z. Wen, J. Mater. Chem. A 2018, 6, 18853; e) J. Duan, W. Wu, A. M. Nolan, T. Wang, J. Wen, C. Hu, Y. Mo, W. Luo, Y. Huang, Adv. Mater. 2019, 31, 1807243; f) R. H. Basappa, T. Ito, H. Yamada, J. Electrochem. Soc. 2017, 164, A666; g) G. T. Hitz, D. W. McOwen, L. Zhang, Z. Ma, Z. Fu, Y. Wen, Y. Gong, J. Dai, T. R. Hamann, L. Hu, E. D. Wachsman, Mater. Today 2019, 22, 50.
dc.identifier.citedreferenceN. J. Taylor, S. Stangeland‐Molo, C. G. Haslam, A. Sharafi, T. Thompson, M. Wang, R. Garcia‐Mendez, J. Sakamoto, J. Power Sources 2018, 396, 314.
dc.identifier.citedreferencea) S. Wang, H. Xu, W. Li, A. Dolocan, A. Manthiram, J. Am. Chem. Soc. 2018, 140, 250; b) C. Wang, Y. Gong, J. Dai, L. Zhang, H. Xie, G. Pastel, B. Liu, E. Wachsman, H. Wang, L. Hu, J. Am. Chem. Soc. 2017, 139, 14257.
dc.identifier.citedreferencea) C.‐L. Tsai, V. Roddatis, C. V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans, O. Guillon, ACS Appl. Mater. Interfaces 2016, 8, 10617; b) A. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, J. Power Sources 2016, 302, 135.
dc.identifier.citedreferenceY. Suzuki, K. Kami, K. Watanabe, A. Watanabe, N. Saito, T. Ohnishi, K. Takada, R. Sudo, N. Imanishi, Solid State Ionics 2015, 278, 172.
dc.identifier.citedreferencea) X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572; b) B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, J. Xiao, Energy Environ. Sci. 2018, 11, 1803; c) S. Xu, D. W. McOwen, L. Zhang, G. T. Hitz, C. Wang, Z. Ma, C. Chen, W. Luo, J. Dai, Y. Kuang, E. M. Hitz, K. Fu, Y. Gong, E. D. Wachsman, L. Hu, Energy Storage Mater. 2018, 15, 458; d) Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J. B. Goodenough, J. Am. Chem. Soc. 2018, 140, 6448.
dc.identifier.citedreferencea) J.‐F. Wu, B.‐W. Pu, D. Wang, S.‐Q. Shi, N. Zhao, X. Guo, X. Guo, ACS Appl. Mater. Interfaces 2019, 11, 898; b) A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, J. Sakamoto, Chem. Mater. 2017, 29, 7961; c) L. Cheng, W. Chen, M. Kunz, K. Persson, N. Tamura, G. Chen, M. Doeff, ACS Appl. Mater. Interfaces 2015, 7, 2073.
dc.identifier.citedreferencea) J. van den Broek, S. Afyon, J. L. M. Rupp, Adv. Energy Mater. 2016, 6, 1600736; b) C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E. D. Wachsman, L. Hu, Proc. Natl. Acad. Sci. USA 2018, 115, 3770.
dc.identifier.citedreferenceF. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, C. Wang, Nat. Energy 2019, 4, 187.
dc.identifier.citedreferenceY. Ren, Y. Shen, Y. Lin, C.‐W. Nan, Electrochem. Commun. 2015, 57, 27.
dc.identifier.citedreferencea) B. Xu, W. Li, H. Duan, H. Wang, Y. Guo, H. Li, H. Liu, J. Power Sources 2017, 354, 68; b) Z. Zhang, L. Zhang, C. Yu, X. Yan, B. Xu, L.‐m. Wang, Electrochim. Acta 2018, 289, 254.
dc.identifier.citedreferencea) H. Duan, H. Zheng, Y. Zhou, B. Xu, H. Liu, Solid State Ionics 2018, 318, 45; b) W. Xia, B. Xu, H. Duan, Y. Guo, H. Kang, H. Li, H. Liu, ACS Appl. Mater. Interfaces 2016, 8, 5335; c) L. Cheng, C. H. Wu, A. Jarry, W. Chen, Y. Ye, J. Zhu, R. Kostecki, K. Persson, J. Guo, M. Salmeron, G. Chen, M. Doeff, ACS Appl. Mater. Interfaces 2015, 7, 17649.
dc.identifier.citedreferenceY. Shao, H. Wang, Z. Gong, D. Wang, B. Zheng, J. Zhu, Y. Lu, Y.‐S. Hu, X. Guo, H. Li, X. Huang, Y. Yang, C.‐W. Nan, L. Chen, ACS Energy Lett. 2018, 3, 1212.
dc.identifier.citedreferenceM. He, Z. Cui, C. Chen, Y. Li, X. Guo, J. Mater. Chem. A 2018, 6, 11463.
dc.identifier.citedreferenceJ. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, J. Akimoto, Chem. Lett. 2011, 40, 60.
dc.identifier.citedreferencea) H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, J. Janek, Phys. Chem. Chem. Phys. 2011, 13, 19378; b) L. Cheng, E. J. Crumlin, W. Chen, R. Qiao, H. Hou, S. Franz Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W. Yang, J. Cabana, T. Richardson, G. Chen, M. Doeff, Phys. Chem. Chem. Phys. 2014, 16, 18294; c) W. Luo, Y. Gong, Y. Zhu, K. K. Fu, J. Dai, S. D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, E. D. Wachsman, L. Hu, J. Am. Chem. Soc. 2016, 138, 12258; d) K. Fu, Y. Gong, Z. Fu, H. Xie, Y. Yao, B. Liu, M. Carter, E. Wachsman, L. Hu, Angew. Chem., Int. Ed. 2017, 56, 14942; e) T. Liu, Y. Ren, Y. Shen, S.‐X. Zhao, Y. Lin, C.‐W. Nan, J. Power Sources 2016, 324, 349; f) C. Wang, Y. Gong, B. Liu, K. Fu, Y. Yao, E. Hitz, Y. Li, J. Dai, S. Xu, W. Luo, E. D. Wachsman, L. Hu, Nano Lett. 2017, 17, 565.
dc.identifier.citedreferenceE. J. Cheng, A. Sharafi, J. Sakamoto, Electrochim. Acta 2017, 223, 85.
dc.identifier.citedreferenceH. Koshikawa, S. Matsuda, K. Kamiya, M. Miyayama, Y. Kubo, K. Uosaki, K. Hashimoto, S. Nakanishi, J. Power Sources 2018, 376, 147.
dc.identifier.citedreferenceT. Krauskopf, H. Hartmann, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2019, 11, 14463.
dc.identifier.citedreferenceL. E. Marbella, S. Zekoll, J. Kasemchainan, S. P. Emge, P. G. Bruce, C. P. Grey, Chem. Mater. 2019, 31, 2762.
dc.identifier.citedreferenceC. Yang, H. Xie, W. Ping, K. Fu, B. Liu, J. Rao, J. Dai, C. Wang, G. Pastel, L. Hu, Adv. Mater. 2019, 31, 1804815.
dc.identifier.citedreferenceX. He, Y. Zhu, Y. Mo, Nat. Commun. 2017, 8, 15893.
dc.identifier.citedreferenceB. Xu, H. Duan, W. Xia, Y. Guo, H. Kang, H. Li, H. Liu, J. Power Sources 2016, 302, 291.
dc.identifier.citedreferenceN. Eustathopoulos, R. Voytovych, J. Mater. Sci. 2016, 51, 425.
dc.identifier.citedreferenceY. Li, B. Xu, H. Xu, H. Duan, X. Lü, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram, J. B. Goodenough, Angew. Chem., Int. Ed. 2017, 56, 753.
dc.identifier.citedreferenceH.‐K. Tian, B. Xu, Y. Qi, J. Power Sources 2018, 392, 79.
dc.identifier.citedreferenceJ. Wang, H. Wang, J. Xie, A. Yang, A. Pei, C.‐L. Wu, F. Shi, Y. Liu, D. Lin, Y. Gong, Y. Cui, Energy Storage Mater. 2018, 14, 345.
dc.identifier.citedreferencea) B. Dunn, H. Kamath, J.‐M. Tarascon, Science 2011, 334, 928; b) B. Nykvist, M. Nilsson, Nat. Clim. Change 2015, 5, 329; c) C.‐X. Zu, H. Li, Energy Environ. Sci. 2011, 4, 2614; d) M. Armand, J. M. Tarascon, Nature 2008, 451, 652; e) J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013; f) J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.‐Q. Yang, J.‐G. Zhang, Nat. Energy 2019, 4, 180; g) T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278; h) Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Adv. Mater. 2018, 30, 1705702; i) J. Wandt, C. Marino, H. A. Gasteiger, P. Jakes, R.‐A. Eichel, J. Granwehr, Energy Environ. Sci. 2015, 8, 1358.
dc.identifier.citedreferencea) E. C. Evarts, Nature 2015, 526, S93; b) M. Balaish, A. Kraytsberg, Y. Ein‐Eli, Phys. Chem. Chem. Phys. 2014, 16, 2801; c) M. Barghamadi, A. Kapoor, C. Wen, J. Electrochem. Soc. 2013, 160, A1256; d) K. Takada, Acta Mater. 2013, 61, 759; e) X. Hao, J. Zhu, X. Jiang, H. Wu, J. Qiao, W. Sun, Z. Wang, K. Sun, Nano Lett. 2016, 16, 2981; f) W. Na, A. S. Lee, J. H. Lee, S. S. Hwang, E. Kim, S. M. Hong, C. M. Koo, ACS Appl. Mater. Interfaces 2016, 8, 12852; g) C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, Adv. Mater. 2017, 29, 1701169.
dc.identifier.citedreferencea) R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem., Int. Ed. 2007, 46, 7778; b) V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 2014, 43, 4714.
dc.identifier.citedreferencea) S. Ramakumar, C. Deviannapoorani, L. Dhivya, L. S. Shankar, R. Murugan, Prog. Mater. Sci. 2017, 88, 325; b) Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y.‐b. He, F. Kang, B. Li, J. Power Sources 2018, 389, 120; c) H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, X. Sun, Nano Energy 2019, 61, 119; d) S. Zugmann, M. Fleischmann, M. Amereller, R. M. Gschwind, H. D. Wiemhöfer, H. J. Gores, Electrochim. Acta 2011, 56, 3926.
dc.identifier.citedreferenceJ. Yue, M. Yan, Y.‐X. Yin, Y.‐G. Guo, Adv. Funct. Mater. 2018, 28, 1707533.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.