Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling
dc.contributor.author | Zheng, Hongpeng | |
dc.contributor.author | Wu, Shaoping | |
dc.contributor.author | Tian, Ran | |
dc.contributor.author | Xu, Zhenming | |
dc.contributor.author | Zhu, Hong | |
dc.contributor.author | Duan, Huanan | |
dc.contributor.author | Liu, Hezhou | |
dc.date.accessioned | 2020-03-17T18:32:47Z | |
dc.date.available | WITHHELD_12_MONTHS | |
dc.date.available | 2020-03-17T18:32:47Z | |
dc.date.issued | 2020-02 | |
dc.identifier.citation | Zheng, Hongpeng; Wu, Shaoping; Tian, Ran; Xu, Zhenming; Zhu, Hong; Duan, Huanan; Liu, Hezhou (2020). "Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling." Advanced Functional Materials 30(6): n/a-n/a. | |
dc.identifier.issn | 1616-301X | |
dc.identifier.issn | 1616-3028 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/154451 | |
dc.description.abstract | Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries.By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | critical current density | |
dc.subject.other | lithium–garnet | |
dc.subject.other | solid electrolyte | |
dc.subject.other | solid‐state lithium batteries | |
dc.subject.other | interface | |
dc.title | Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Engineering (General) | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154451/1/adfm201906189-sup-0001-SuppMat.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154451/2/adfm201906189.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154451/3/adfm201906189_am.pdf | |
dc.identifier.doi | 10.1002/adfm.201906189 | |
dc.identifier.source | Advanced Functional Materials | |
dc.identifier.citedreference | a) J. Fu, P. Yu, N. Zhang, G. Ren, S. Zheng, W. Huang, X. Long, H. Li, X. Liu, Energy Environ. Sci. 2019, 12, 1404; b) Y. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, F. Pan, Adv. Energy Mater. 2019, 9, 1900671; c) A. Sharafi, C. G. Haslam, R. D. Kerns, J. Wolfenstine, J. Sakamoto, J. Mater. Chem. A 2017, 5, 21491; d) Y. Lu, X. Huang, Y. Ruan, Q. Wang, R. Kun, J. Yang, Z. Wen, J. Mater. Chem. A 2018, 6, 18853; e) J. Duan, W. Wu, A. M. Nolan, T. Wang, J. Wen, C. Hu, Y. Mo, W. Luo, Y. Huang, Adv. Mater. 2019, 31, 1807243; f) R. H. Basappa, T. Ito, H. Yamada, J. Electrochem. Soc. 2017, 164, A666; g) G. T. Hitz, D. W. McOwen, L. Zhang, Z. Ma, Z. Fu, Y. Wen, Y. Gong, J. Dai, T. R. Hamann, L. Hu, E. D. Wachsman, Mater. Today 2019, 22, 50. | |
dc.identifier.citedreference | N. J. Taylor, S. Stangeland‐Molo, C. G. Haslam, A. Sharafi, T. Thompson, M. Wang, R. Garcia‐Mendez, J. Sakamoto, J. Power Sources 2018, 396, 314. | |
dc.identifier.citedreference | a) S. Wang, H. Xu, W. Li, A. Dolocan, A. Manthiram, J. Am. Chem. Soc. 2018, 140, 250; b) C. Wang, Y. Gong, J. Dai, L. Zhang, H. Xie, G. Pastel, B. Liu, E. Wachsman, H. Wang, L. Hu, J. Am. Chem. Soc. 2017, 139, 14257. | |
dc.identifier.citedreference | a) C.‐L. Tsai, V. Roddatis, C. V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans, O. Guillon, ACS Appl. Mater. Interfaces 2016, 8, 10617; b) A. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, J. Power Sources 2016, 302, 135. | |
dc.identifier.citedreference | Y. Suzuki, K. Kami, K. Watanabe, A. Watanabe, N. Saito, T. Ohnishi, K. Takada, R. Sudo, N. Imanishi, Solid State Ionics 2015, 278, 172. | |
dc.identifier.citedreference | a) X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572; b) B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, J. Xiao, Energy Environ. Sci. 2018, 11, 1803; c) S. Xu, D. W. McOwen, L. Zhang, G. T. Hitz, C. Wang, Z. Ma, C. Chen, W. Luo, J. Dai, Y. Kuang, E. M. Hitz, K. Fu, Y. Gong, E. D. Wachsman, L. Hu, Energy Storage Mater. 2018, 15, 458; d) Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J. B. Goodenough, J. Am. Chem. Soc. 2018, 140, 6448. | |
dc.identifier.citedreference | a) J.‐F. Wu, B.‐W. Pu, D. Wang, S.‐Q. Shi, N. Zhao, X. Guo, X. Guo, ACS Appl. Mater. Interfaces 2019, 11, 898; b) A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, J. Sakamoto, Chem. Mater. 2017, 29, 7961; c) L. Cheng, W. Chen, M. Kunz, K. Persson, N. Tamura, G. Chen, M. Doeff, ACS Appl. Mater. Interfaces 2015, 7, 2073. | |
dc.identifier.citedreference | a) J. van den Broek, S. Afyon, J. L. M. Rupp, Adv. Energy Mater. 2016, 6, 1600736; b) C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E. D. Wachsman, L. Hu, Proc. Natl. Acad. Sci. USA 2018, 115, 3770. | |
dc.identifier.citedreference | F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, C. Wang, Nat. Energy 2019, 4, 187. | |
dc.identifier.citedreference | Y. Ren, Y. Shen, Y. Lin, C.‐W. Nan, Electrochem. Commun. 2015, 57, 27. | |
dc.identifier.citedreference | a) B. Xu, W. Li, H. Duan, H. Wang, Y. Guo, H. Li, H. Liu, J. Power Sources 2017, 354, 68; b) Z. Zhang, L. Zhang, C. Yu, X. Yan, B. Xu, L.‐m. Wang, Electrochim. Acta 2018, 289, 254. | |
dc.identifier.citedreference | a) H. Duan, H. Zheng, Y. Zhou, B. Xu, H. Liu, Solid State Ionics 2018, 318, 45; b) W. Xia, B. Xu, H. Duan, Y. Guo, H. Kang, H. Li, H. Liu, ACS Appl. Mater. Interfaces 2016, 8, 5335; c) L. Cheng, C. H. Wu, A. Jarry, W. Chen, Y. Ye, J. Zhu, R. Kostecki, K. Persson, J. Guo, M. Salmeron, G. Chen, M. Doeff, ACS Appl. Mater. Interfaces 2015, 7, 17649. | |
dc.identifier.citedreference | Y. Shao, H. Wang, Z. Gong, D. Wang, B. Zheng, J. Zhu, Y. Lu, Y.‐S. Hu, X. Guo, H. Li, X. Huang, Y. Yang, C.‐W. Nan, L. Chen, ACS Energy Lett. 2018, 3, 1212. | |
dc.identifier.citedreference | M. He, Z. Cui, C. Chen, Y. Li, X. Guo, J. Mater. Chem. A 2018, 6, 11463. | |
dc.identifier.citedreference | J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, J. Akimoto, Chem. Lett. 2011, 40, 60. | |
dc.identifier.citedreference | a) H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, J. Janek, Phys. Chem. Chem. Phys. 2011, 13, 19378; b) L. Cheng, E. J. Crumlin, W. Chen, R. Qiao, H. Hou, S. Franz Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W. Yang, J. Cabana, T. Richardson, G. Chen, M. Doeff, Phys. Chem. Chem. Phys. 2014, 16, 18294; c) W. Luo, Y. Gong, Y. Zhu, K. K. Fu, J. Dai, S. D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, E. D. Wachsman, L. Hu, J. Am. Chem. Soc. 2016, 138, 12258; d) K. Fu, Y. Gong, Z. Fu, H. Xie, Y. Yao, B. Liu, M. Carter, E. Wachsman, L. Hu, Angew. Chem., Int. Ed. 2017, 56, 14942; e) T. Liu, Y. Ren, Y. Shen, S.‐X. Zhao, Y. Lin, C.‐W. Nan, J. Power Sources 2016, 324, 349; f) C. Wang, Y. Gong, B. Liu, K. Fu, Y. Yao, E. Hitz, Y. Li, J. Dai, S. Xu, W. Luo, E. D. Wachsman, L. Hu, Nano Lett. 2017, 17, 565. | |
dc.identifier.citedreference | E. J. Cheng, A. Sharafi, J. Sakamoto, Electrochim. Acta 2017, 223, 85. | |
dc.identifier.citedreference | H. Koshikawa, S. Matsuda, K. Kamiya, M. Miyayama, Y. Kubo, K. Uosaki, K. Hashimoto, S. Nakanishi, J. Power Sources 2018, 376, 147. | |
dc.identifier.citedreference | T. Krauskopf, H. Hartmann, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2019, 11, 14463. | |
dc.identifier.citedreference | L. E. Marbella, S. Zekoll, J. Kasemchainan, S. P. Emge, P. G. Bruce, C. P. Grey, Chem. Mater. 2019, 31, 2762. | |
dc.identifier.citedreference | C. Yang, H. Xie, W. Ping, K. Fu, B. Liu, J. Rao, J. Dai, C. Wang, G. Pastel, L. Hu, Adv. Mater. 2019, 31, 1804815. | |
dc.identifier.citedreference | X. He, Y. Zhu, Y. Mo, Nat. Commun. 2017, 8, 15893. | |
dc.identifier.citedreference | B. Xu, H. Duan, W. Xia, Y. Guo, H. Kang, H. Li, H. Liu, J. Power Sources 2016, 302, 291. | |
dc.identifier.citedreference | N. Eustathopoulos, R. Voytovych, J. Mater. Sci. 2016, 51, 425. | |
dc.identifier.citedreference | Y. Li, B. Xu, H. Xu, H. Duan, X. Lü, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram, J. B. Goodenough, Angew. Chem., Int. Ed. 2017, 56, 753. | |
dc.identifier.citedreference | H.‐K. Tian, B. Xu, Y. Qi, J. Power Sources 2018, 392, 79. | |
dc.identifier.citedreference | J. Wang, H. Wang, J. Xie, A. Yang, A. Pei, C.‐L. Wu, F. Shi, Y. Liu, D. Lin, Y. Gong, Y. Cui, Energy Storage Mater. 2018, 14, 345. | |
dc.identifier.citedreference | a) B. Dunn, H. Kamath, J.‐M. Tarascon, Science 2011, 334, 928; b) B. Nykvist, M. Nilsson, Nat. Clim. Change 2015, 5, 329; c) C.‐X. Zu, H. Li, Energy Environ. Sci. 2011, 4, 2614; d) M. Armand, J. M. Tarascon, Nature 2008, 451, 652; e) J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013; f) J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.‐Q. Yang, J.‐G. Zhang, Nat. Energy 2019, 4, 180; g) T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278; h) Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Adv. Mater. 2018, 30, 1705702; i) J. Wandt, C. Marino, H. A. Gasteiger, P. Jakes, R.‐A. Eichel, J. Granwehr, Energy Environ. Sci. 2015, 8, 1358. | |
dc.identifier.citedreference | a) E. C. Evarts, Nature 2015, 526, S93; b) M. Balaish, A. Kraytsberg, Y. Ein‐Eli, Phys. Chem. Chem. Phys. 2014, 16, 2801; c) M. Barghamadi, A. Kapoor, C. Wen, J. Electrochem. Soc. 2013, 160, A1256; d) K. Takada, Acta Mater. 2013, 61, 759; e) X. Hao, J. Zhu, X. Jiang, H. Wu, J. Qiao, W. Sun, Z. Wang, K. Sun, Nano Lett. 2016, 16, 2981; f) W. Na, A. S. Lee, J. H. Lee, S. S. Hwang, E. Kim, S. M. Hong, C. M. Koo, ACS Appl. Mater. Interfaces 2016, 8, 12852; g) C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, Adv. Mater. 2017, 29, 1701169. | |
dc.identifier.citedreference | a) R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem., Int. Ed. 2007, 46, 7778; b) V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 2014, 43, 4714. | |
dc.identifier.citedreference | a) S. Ramakumar, C. Deviannapoorani, L. Dhivya, L. S. Shankar, R. Murugan, Prog. Mater. Sci. 2017, 88, 325; b) Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y.‐b. He, F. Kang, B. Li, J. Power Sources 2018, 389, 120; c) H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, X. Sun, Nano Energy 2019, 61, 119; d) S. Zugmann, M. Fleischmann, M. Amereller, R. M. Gschwind, H. D. Wiemhöfer, H. J. Gores, Electrochim. Acta 2011, 56, 3926. | |
dc.identifier.citedreference | J. Yue, M. Yan, Y.‐X. Yin, Y.‐G. Guo, Adv. Funct. Mater. 2018, 28, 1707533. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.